鲁棒典型相关神经网络

Zhenkun Gou, C. Fyfe
{"title":"鲁棒典型相关神经网络","authors":"Zhenkun Gou, C. Fyfe","doi":"10.1109/NNSP.2002.1030035","DOIUrl":null,"url":null,"abstract":"We review a neural implementation of canonical correlation analysis and show, using ideas suggested by ridge regression, how to make the algorithm robust. The network is shown to operate on data sets which exhibit multicollinearity. We develop a second model which not only performs as well on multicollinear data but also on general data sets. This model allows us to vary a single parameter so that the network is capable of performing partial least squares regression (at one extreme) to canonical correlation analysis (at the other) and every intermediate operation between the two. On multicollinear data, the parameter setting is shown to be important but on more general data no particular parameter setting is required. Finally, the algorithm acts on such data as a smoother in that the resulting weight vectors are much smoother and more interpretable than the weights without the robustification term.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A robust canonical correlation neural network\",\"authors\":\"Zhenkun Gou, C. Fyfe\",\"doi\":\"10.1109/NNSP.2002.1030035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We review a neural implementation of canonical correlation analysis and show, using ideas suggested by ridge regression, how to make the algorithm robust. The network is shown to operate on data sets which exhibit multicollinearity. We develop a second model which not only performs as well on multicollinear data but also on general data sets. This model allows us to vary a single parameter so that the network is capable of performing partial least squares regression (at one extreme) to canonical correlation analysis (at the other) and every intermediate operation between the two. On multicollinear data, the parameter setting is shown to be important but on more general data no particular parameter setting is required. Finally, the algorithm acts on such data as a smoother in that the resulting weight vectors are much smoother and more interpretable than the weights without the robustification term.\",\"PeriodicalId\":117945,\"journal\":{\"name\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2002.1030035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们回顾了典型相关分析的神经实现,并展示了如何使用脊回归提出的思想使算法具有鲁棒性。该网络在具有多重共线性的数据集上运行。我们开发了第二种模型,它不仅在多重共线性数据集上表现良好,而且在一般数据集上也表现良好。该模型允许我们改变单个参数,以便网络能够执行偏最小二乘回归(在一个极端)到典型相关分析(在另一个极端)以及两者之间的每个中间操作。对于多重共线数据,参数设置是很重要的,但对于更一般的数据,不需要特殊的参数设置。最后,该算法对这些数据进行平滑处理,因为所得到的权重向量比没有鲁棒化项的权重更平滑,更可解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A robust canonical correlation neural network
We review a neural implementation of canonical correlation analysis and show, using ideas suggested by ridge regression, how to make the algorithm robust. The network is shown to operate on data sets which exhibit multicollinearity. We develop a second model which not only performs as well on multicollinear data but also on general data sets. This model allows us to vary a single parameter so that the network is capable of performing partial least squares regression (at one extreme) to canonical correlation analysis (at the other) and every intermediate operation between the two. On multicollinear data, the parameter setting is shown to be important but on more general data no particular parameter setting is required. Finally, the algorithm acts on such data as a smoother in that the resulting weight vectors are much smoother and more interpretable than the weights without the robustification term.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fusion of multiple experts in multimodal biometric personal identity verification systems A new SOLPN-based rate control algorithm for MPEG video coding Analog implementation for networks of integrate-and-fire neurons with adaptive local connectivity Removal of residual crosstalk components in blind source separation using LMS filters Functional connectivity modelling in fMRI based on causal networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1