{"title":"n链微泳者的可控性和最佳泳姿","authors":"L. Giraldi, P. Martinon, M. Zoppello","doi":"10.1109/CDC.2013.6760480","DOIUrl":null,"url":null,"abstract":"In this paper we focus on the N-link swimmer [1], a generalization of the classical 3-link Purcell swimmer [18]. We use the Resistive Force Theory to express the equation of motion in a fluid with a low Reynolds number, see for instance [12]. We prove that the swimmer is controllable in the whole plane for N ≥ 3 and for almost every set of stick lengths. As a direct result, there exists an optimal swimming strategy to reach a desired configuration in minimum time. Numerical experiments for N = 3 (Purcell swimmer) suggest that the optimal strategy is periodic, namely a sequence of identical strokes. Our results indicate that this candidate for an optimal stroke indeed gives a better displacement speed than the classical Purcell stroke.","PeriodicalId":415568,"journal":{"name":"52nd IEEE Conference on Decision and Control","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Controllability and optimal strokes for N-link microswimmer\",\"authors\":\"L. Giraldi, P. Martinon, M. Zoppello\",\"doi\":\"10.1109/CDC.2013.6760480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we focus on the N-link swimmer [1], a generalization of the classical 3-link Purcell swimmer [18]. We use the Resistive Force Theory to express the equation of motion in a fluid with a low Reynolds number, see for instance [12]. We prove that the swimmer is controllable in the whole plane for N ≥ 3 and for almost every set of stick lengths. As a direct result, there exists an optimal swimming strategy to reach a desired configuration in minimum time. Numerical experiments for N = 3 (Purcell swimmer) suggest that the optimal strategy is periodic, namely a sequence of identical strokes. Our results indicate that this candidate for an optimal stroke indeed gives a better displacement speed than the classical Purcell stroke.\",\"PeriodicalId\":415568,\"journal\":{\"name\":\"52nd IEEE Conference on Decision and Control\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"52nd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2013.6760480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"52nd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2013.6760480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Controllability and optimal strokes for N-link microswimmer
In this paper we focus on the N-link swimmer [1], a generalization of the classical 3-link Purcell swimmer [18]. We use the Resistive Force Theory to express the equation of motion in a fluid with a low Reynolds number, see for instance [12]. We prove that the swimmer is controllable in the whole plane for N ≥ 3 and for almost every set of stick lengths. As a direct result, there exists an optimal swimming strategy to reach a desired configuration in minimum time. Numerical experiments for N = 3 (Purcell swimmer) suggest that the optimal strategy is periodic, namely a sequence of identical strokes. Our results indicate that this candidate for an optimal stroke indeed gives a better displacement speed than the classical Purcell stroke.