{"title":"在MIMD超级计算机上低密度流体流动的蒙特卡罗粒子模拟","authors":"S. Plimpton, T. Bartel","doi":"10.1109/SHPCC.1992.232643","DOIUrl":null,"url":null,"abstract":"Direct simulation Monte Carlo is a well-established technique for modeling low density fluid flows. The parallel implementation of a general simulation which allows for body-fitted grids, particle weighting, and a variety of surface and flow chemistry models is described. The authors compare its performance on a 1024-node nCUBE 2 to a serial version for the CRAY-YMP. Experiences with load-balancing the computation via graph-based heuristics and the newer spectral techniques are also discussed. This is a critical issue, since density fluctuations can create orders-of-magnitude differences in computational loads as the simulation progresses.<<ETX>>","PeriodicalId":254515,"journal":{"name":"Proceedings Scalable High Performance Computing Conference SHPCC-92.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Monte Carlo particle simulation of low-density fluid flow on MIMD supercomputers\",\"authors\":\"S. Plimpton, T. Bartel\",\"doi\":\"10.1109/SHPCC.1992.232643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direct simulation Monte Carlo is a well-established technique for modeling low density fluid flows. The parallel implementation of a general simulation which allows for body-fitted grids, particle weighting, and a variety of surface and flow chemistry models is described. The authors compare its performance on a 1024-node nCUBE 2 to a serial version for the CRAY-YMP. Experiences with load-balancing the computation via graph-based heuristics and the newer spectral techniques are also discussed. This is a critical issue, since density fluctuations can create orders-of-magnitude differences in computational loads as the simulation progresses.<<ETX>>\",\"PeriodicalId\":254515,\"journal\":{\"name\":\"Proceedings Scalable High Performance Computing Conference SHPCC-92.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Scalable High Performance Computing Conference SHPCC-92.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SHPCC.1992.232643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Scalable High Performance Computing Conference SHPCC-92.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SHPCC.1992.232643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Monte Carlo particle simulation of low-density fluid flow on MIMD supercomputers
Direct simulation Monte Carlo is a well-established technique for modeling low density fluid flows. The parallel implementation of a general simulation which allows for body-fitted grids, particle weighting, and a variety of surface and flow chemistry models is described. The authors compare its performance on a 1024-node nCUBE 2 to a serial version for the CRAY-YMP. Experiences with load-balancing the computation via graph-based heuristics and the newer spectral techniques are also discussed. This is a critical issue, since density fluctuations can create orders-of-magnitude differences in computational loads as the simulation progresses.<>