{"title":"适合物联网的自适应轻量级安全框架","authors":"M. Domb","doi":"10.5772/INTECHOPEN.73712","DOIUrl":null,"url":null,"abstract":"Standard security systems are widely implemented in the industry. These systems con- sume considerable computational resources. Devices in the Internet of Things [IoT] are very limited with processing capacity, memory and storage. Therefore, existing security systems are not applicable for IoT. To cope with it, we propose downsizing of existing security processes. In this chapter, we describe three areas, where we reduce the required storage space and processing power. The first is the classification process required for ongoing anomaly detection, whereby values accepted or generated by a sensor are clas- sified as valid or abnormal. We collect historic data and analyze it using machine learn ing techniques to draw a contour, where all streaming values are expected to fall within the contour space. Hence, the detailed collected data from the sensors are no longer required for real-time anomaly detection. The second area involves the implementation of the Random Forest algorithm to apply distributed and parallel processing for anomaly discovery. The third area is downsizing cryptography calculations, to fit IoT limitations without compromising security. For each area, we present experimental results support-ing our approach and implementation. as follows: We begin with an introduction followed by the relevant literature review. We then discuss rules extraction using machine learning tech -niques. We present random forest as the most suitable ML for IoT. We proceed with various improvements, utilizing RF and IoT attributes. We then outline an experiment that executes RF building and its corresponding classifications using 15 different configurations, each based on a unique combination of the number of processors and the forest size.","PeriodicalId":297158,"journal":{"name":"Internet of Things - Technology, Applications and Standardization","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Adaptive Lightweight Security Framework Suited for IoT\",\"authors\":\"M. Domb\",\"doi\":\"10.5772/INTECHOPEN.73712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Standard security systems are widely implemented in the industry. These systems con- sume considerable computational resources. Devices in the Internet of Things [IoT] are very limited with processing capacity, memory and storage. Therefore, existing security systems are not applicable for IoT. To cope with it, we propose downsizing of existing security processes. In this chapter, we describe three areas, where we reduce the required storage space and processing power. The first is the classification process required for ongoing anomaly detection, whereby values accepted or generated by a sensor are clas- sified as valid or abnormal. We collect historic data and analyze it using machine learn ing techniques to draw a contour, where all streaming values are expected to fall within the contour space. Hence, the detailed collected data from the sensors are no longer required for real-time anomaly detection. The second area involves the implementation of the Random Forest algorithm to apply distributed and parallel processing for anomaly discovery. The third area is downsizing cryptography calculations, to fit IoT limitations without compromising security. For each area, we present experimental results support-ing our approach and implementation. as follows: We begin with an introduction followed by the relevant literature review. We then discuss rules extraction using machine learning tech -niques. We present random forest as the most suitable ML for IoT. We proceed with various improvements, utilizing RF and IoT attributes. We then outline an experiment that executes RF building and its corresponding classifications using 15 different configurations, each based on a unique combination of the number of processors and the forest size.\",\"PeriodicalId\":297158,\"journal\":{\"name\":\"Internet of Things - Technology, Applications and Standardization\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet of Things - Technology, Applications and Standardization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.73712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things - Technology, Applications and Standardization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.73712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Adaptive Lightweight Security Framework Suited for IoT
Standard security systems are widely implemented in the industry. These systems con- sume considerable computational resources. Devices in the Internet of Things [IoT] are very limited with processing capacity, memory and storage. Therefore, existing security systems are not applicable for IoT. To cope with it, we propose downsizing of existing security processes. In this chapter, we describe three areas, where we reduce the required storage space and processing power. The first is the classification process required for ongoing anomaly detection, whereby values accepted or generated by a sensor are clas- sified as valid or abnormal. We collect historic data and analyze it using machine learn ing techniques to draw a contour, where all streaming values are expected to fall within the contour space. Hence, the detailed collected data from the sensors are no longer required for real-time anomaly detection. The second area involves the implementation of the Random Forest algorithm to apply distributed and parallel processing for anomaly discovery. The third area is downsizing cryptography calculations, to fit IoT limitations without compromising security. For each area, we present experimental results support-ing our approach and implementation. as follows: We begin with an introduction followed by the relevant literature review. We then discuss rules extraction using machine learning tech -niques. We present random forest as the most suitable ML for IoT. We proceed with various improvements, utilizing RF and IoT attributes. We then outline an experiment that executes RF building and its corresponding classifications using 15 different configurations, each based on a unique combination of the number of processors and the forest size.