安全仪表系统安全完整性水平评价的统一模型

J. Bukowski
{"title":"安全仪表系统安全完整性水平评价的统一模型","authors":"J. Bukowski","doi":"10.1109/RAMS.2008.4925784","DOIUrl":null,"url":null,"abstract":"This paper proposes a new figure of merit (FOM) for evaluating safety integrity levels (SIL) for safety instrumented systems (SIS). Currently, SIL ratings are based on two separate tables - one for low process demands and one for high process demands. The proposed FOM, probability of an accident as a function of time, PAC(t), unifies the two separate tables into a single table and extends the concept of risk reduction factor (RRF), which is currently only defined for low demand applications, to high demand applications as well. Using PAC(t) as the new FOM explicitly includes the process demand rate in the model and therefore, permits the effects of different demand rates on the safety performance of a specific SIS to be quantified. The model also allows for the inclusion of diagnostic coverage and on-line repair so that the effects of these parameters can also be quantified. Finally, using PAC(t), the maximum time of periodic inspection (TI) permitted before the SIS moves to a lower SIL rating can be easily calculated. A number of examples illustrate the application and usefulness of PAC(t) as the defining FOM for SIL evaluation.","PeriodicalId":143940,"journal":{"name":"2008 Annual Reliability and Maintainability Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A unified model for evaluating the safety integrity level of safety instrumented systems\",\"authors\":\"J. Bukowski\",\"doi\":\"10.1109/RAMS.2008.4925784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new figure of merit (FOM) for evaluating safety integrity levels (SIL) for safety instrumented systems (SIS). Currently, SIL ratings are based on two separate tables - one for low process demands and one for high process demands. The proposed FOM, probability of an accident as a function of time, PAC(t), unifies the two separate tables into a single table and extends the concept of risk reduction factor (RRF), which is currently only defined for low demand applications, to high demand applications as well. Using PAC(t) as the new FOM explicitly includes the process demand rate in the model and therefore, permits the effects of different demand rates on the safety performance of a specific SIS to be quantified. The model also allows for the inclusion of diagnostic coverage and on-line repair so that the effects of these parameters can also be quantified. Finally, using PAC(t), the maximum time of periodic inspection (TI) permitted before the SIS moves to a lower SIL rating can be easily calculated. A number of examples illustrate the application and usefulness of PAC(t) as the defining FOM for SIL evaluation.\",\"PeriodicalId\":143940,\"journal\":{\"name\":\"2008 Annual Reliability and Maintainability Symposium\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Annual Reliability and Maintainability Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAMS.2008.4925784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Annual Reliability and Maintainability Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAMS.2008.4925784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种评价安全仪表系统(SIS)安全完整性水平(SIL)的新优点图(FOM)。目前,SIL评级基于两个独立的表——一个用于低过程要求,另一个用于高过程要求。建议的FOM(事故概率作为时间的函数PAC(t))将两个独立的表统一为一个表,并将风险降低因子(RRF)的概念(目前仅为低需求应用程序定义)扩展到高需求应用程序。使用PAC(t)作为新的FOM明确地将过程需求率包括在模型中,因此,允许对特定SIS的不同需求率的安全性能的影响进行量化。该模型还允许包括诊断覆盖率和在线修复,以便这些参数的影响也可以量化。最后,使用PAC(t),可以很容易地计算出SIS移动到较低SIL额定值之前允许的定期检查(TI)的最长时间。许多例子说明了PAC(t)作为SIL评估的定义表单的应用和有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A unified model for evaluating the safety integrity level of safety instrumented systems
This paper proposes a new figure of merit (FOM) for evaluating safety integrity levels (SIL) for safety instrumented systems (SIS). Currently, SIL ratings are based on two separate tables - one for low process demands and one for high process demands. The proposed FOM, probability of an accident as a function of time, PAC(t), unifies the two separate tables into a single table and extends the concept of risk reduction factor (RRF), which is currently only defined for low demand applications, to high demand applications as well. Using PAC(t) as the new FOM explicitly includes the process demand rate in the model and therefore, permits the effects of different demand rates on the safety performance of a specific SIS to be quantified. The model also allows for the inclusion of diagnostic coverage and on-line repair so that the effects of these parameters can also be quantified. Finally, using PAC(t), the maximum time of periodic inspection (TI) permitted before the SIS moves to a lower SIL rating can be easily calculated. A number of examples illustrate the application and usefulness of PAC(t) as the defining FOM for SIL evaluation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
What's wrong with bent pin analysis, and what to do about it A systems reliability approach to decision making in autonomous multi-platform systems operating a phased mission Software tools for PRA Optimal highway maintenance policies under uncertainty Reliability analysis of phased-mission systems using Bayesian networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1