{"title":"对使用UML活动图的工作流设计的验证支持","authors":"Rik Eshuis, R. Wieringa","doi":"10.1145/581339.581362","DOIUrl":null,"url":null,"abstract":"We describe a tool that supports verification of workflow models specified in UML activity graphs. The tool translates an activity graph into an input format for a model checker according to a semantics we published earlier. With the model checker arbitrary propositional requirements can be checked against the input model. If a requirement fails to hold an error trace is returned by the model checker. The tool automatically translates such an error trace into an activity graph trace by highlighting a corresponding path in the activity graph. One of the problems that is dealt with is that model checkers require a finite state space whereas workflow models in general have an infinite state space. Another problem is that strong fairness is necessary to obtain realistic results. Only model checkers that use a special model checking algorithm for strong fairness are suitable for verifying workflow models. We analyse the structure of the state space. We illustrate our approach with some example verifications.","PeriodicalId":186061,"journal":{"name":"Proceedings of the 24th International Conference on Software Engineering. ICSE 2002","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"145","resultStr":"{\"title\":\"Verification support for workflow design with UML activity graphs\",\"authors\":\"Rik Eshuis, R. Wieringa\",\"doi\":\"10.1145/581339.581362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a tool that supports verification of workflow models specified in UML activity graphs. The tool translates an activity graph into an input format for a model checker according to a semantics we published earlier. With the model checker arbitrary propositional requirements can be checked against the input model. If a requirement fails to hold an error trace is returned by the model checker. The tool automatically translates such an error trace into an activity graph trace by highlighting a corresponding path in the activity graph. One of the problems that is dealt with is that model checkers require a finite state space whereas workflow models in general have an infinite state space. Another problem is that strong fairness is necessary to obtain realistic results. Only model checkers that use a special model checking algorithm for strong fairness are suitable for verifying workflow models. We analyse the structure of the state space. We illustrate our approach with some example verifications.\",\"PeriodicalId\":186061,\"journal\":{\"name\":\"Proceedings of the 24th International Conference on Software Engineering. ICSE 2002\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"145\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th International Conference on Software Engineering. ICSE 2002\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/581339.581362\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th International Conference on Software Engineering. ICSE 2002","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/581339.581362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Verification support for workflow design with UML activity graphs
We describe a tool that supports verification of workflow models specified in UML activity graphs. The tool translates an activity graph into an input format for a model checker according to a semantics we published earlier. With the model checker arbitrary propositional requirements can be checked against the input model. If a requirement fails to hold an error trace is returned by the model checker. The tool automatically translates such an error trace into an activity graph trace by highlighting a corresponding path in the activity graph. One of the problems that is dealt with is that model checkers require a finite state space whereas workflow models in general have an infinite state space. Another problem is that strong fairness is necessary to obtain realistic results. Only model checkers that use a special model checking algorithm for strong fairness are suitable for verifying workflow models. We analyse the structure of the state space. We illustrate our approach with some example verifications.