{"title":"海洋生态-网络-物理系统大规模保护的自主溢油和污染检测","authors":"Asma Bahrani, Babak Majidi, M. Eshghi","doi":"10.1109/ICSPIS54653.2021.9729370","DOIUrl":null,"url":null,"abstract":"In recent years, advancement of the industry and increased human activities created significant pollution in the marine environment and coastal regions of the Persian Gulf. These pollutions cause various diseases and serious damages to the human health and animal species. Early identification of various pollutions helps the coastal management to organize their resources and rapidly respond to the problems. Due to the large scale of the coastal regions, manual investigation of the pollutions is a very time-consuming task. Unmanned robots can be used as autonomous agents for rapid large-scale detection and classification of pollutions in the coastal regions. In this paper, an artificial intelligence-based vision system for autonomous marine pollution detection is proposed. A combination of computer vision and machine learning methods are used for autonomous detection of various pollutions in the coastal and marine environment. In this study, 3000 images of Persian Gulf coastal pollutions is collected and used for training an artificial intelligence system for coastal conservation. The experimental results shows that the proposed framework has a 98% accuracy for identifying and classifying coastal and marine pollutions. The proposed system can be used as the vision system of an autonomous coastal conservation robot and increase the speed of coastal conservation and management significantly.","PeriodicalId":286966,"journal":{"name":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Autonomous oil spill and pollution detection for large-scale conservation in marine eco-cyber-physical systems\",\"authors\":\"Asma Bahrani, Babak Majidi, M. Eshghi\",\"doi\":\"10.1109/ICSPIS54653.2021.9729370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, advancement of the industry and increased human activities created significant pollution in the marine environment and coastal regions of the Persian Gulf. These pollutions cause various diseases and serious damages to the human health and animal species. Early identification of various pollutions helps the coastal management to organize their resources and rapidly respond to the problems. Due to the large scale of the coastal regions, manual investigation of the pollutions is a very time-consuming task. Unmanned robots can be used as autonomous agents for rapid large-scale detection and classification of pollutions in the coastal regions. In this paper, an artificial intelligence-based vision system for autonomous marine pollution detection is proposed. A combination of computer vision and machine learning methods are used for autonomous detection of various pollutions in the coastal and marine environment. In this study, 3000 images of Persian Gulf coastal pollutions is collected and used for training an artificial intelligence system for coastal conservation. The experimental results shows that the proposed framework has a 98% accuracy for identifying and classifying coastal and marine pollutions. The proposed system can be used as the vision system of an autonomous coastal conservation robot and increase the speed of coastal conservation and management significantly.\",\"PeriodicalId\":286966,\"journal\":{\"name\":\"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSPIS54653.2021.9729370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPIS54653.2021.9729370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Autonomous oil spill and pollution detection for large-scale conservation in marine eco-cyber-physical systems
In recent years, advancement of the industry and increased human activities created significant pollution in the marine environment and coastal regions of the Persian Gulf. These pollutions cause various diseases and serious damages to the human health and animal species. Early identification of various pollutions helps the coastal management to organize their resources and rapidly respond to the problems. Due to the large scale of the coastal regions, manual investigation of the pollutions is a very time-consuming task. Unmanned robots can be used as autonomous agents for rapid large-scale detection and classification of pollutions in the coastal regions. In this paper, an artificial intelligence-based vision system for autonomous marine pollution detection is proposed. A combination of computer vision and machine learning methods are used for autonomous detection of various pollutions in the coastal and marine environment. In this study, 3000 images of Persian Gulf coastal pollutions is collected and used for training an artificial intelligence system for coastal conservation. The experimental results shows that the proposed framework has a 98% accuracy for identifying and classifying coastal and marine pollutions. The proposed system can be used as the vision system of an autonomous coastal conservation robot and increase the speed of coastal conservation and management significantly.