基于OLPP的咬翼牙齿图像自动分类

Nourdin Al-sherif, G. Guo, H. Ammar
{"title":"基于OLPP的咬翼牙齿图像自动分类","authors":"Nourdin Al-sherif, G. Guo, H. Ammar","doi":"10.1109/ISM.2012.26","DOIUrl":null,"url":null,"abstract":"Teeth classification is an important component in building an Automated Dental Identification System (ADIS) as part of creating a data structure that guides tooth-to-tooth matching. This aids in avoiding illogical comparisons that both inefficiently consume the limited computational resources and mislead decision-making. We tackle this problem by using low computational-cost, appearance-based Orthogonal Locality Preserving Projection (OLPP) algorithm to assign an initial class, i.e. molar or premolar to the teeth in bitewing dental images. After this initial classification, we use a string matching technique, based on teeth neighborhood rules, to validate initial teeth-classes and thus assign each tooth a number corresponding to its location in the dental chart. On a large dataset of bitewing films that contain 622 teeth, the proposed approach achieves classification accuracy of 89% and teeth class validation enhances the overall teeth classification accuracy to 92%.","PeriodicalId":282528,"journal":{"name":"2012 IEEE International Symposium on Multimedia","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Automatic Classification of Teeth in Bitewing Dental Images Using OLPP\",\"authors\":\"Nourdin Al-sherif, G. Guo, H. Ammar\",\"doi\":\"10.1109/ISM.2012.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Teeth classification is an important component in building an Automated Dental Identification System (ADIS) as part of creating a data structure that guides tooth-to-tooth matching. This aids in avoiding illogical comparisons that both inefficiently consume the limited computational resources and mislead decision-making. We tackle this problem by using low computational-cost, appearance-based Orthogonal Locality Preserving Projection (OLPP) algorithm to assign an initial class, i.e. molar or premolar to the teeth in bitewing dental images. After this initial classification, we use a string matching technique, based on teeth neighborhood rules, to validate initial teeth-classes and thus assign each tooth a number corresponding to its location in the dental chart. On a large dataset of bitewing films that contain 622 teeth, the proposed approach achieves classification accuracy of 89% and teeth class validation enhances the overall teeth classification accuracy to 92%.\",\"PeriodicalId\":282528,\"journal\":{\"name\":\"2012 IEEE International Symposium on Multimedia\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Symposium on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISM.2012.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Symposium on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2012.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

牙齿分类是建立自动牙齿识别系统(ADIS)的重要组成部分,是创建指导牙齿对牙齿匹配的数据结构的一部分。这有助于避免不合逻辑的比较,这种比较既会低效地消耗有限的计算资源,又会误导决策。我们通过使用低计算成本、基于外观的正交局域保持投影(OLPP)算法来为咬翼牙齿图像中的牙齿分配初始类别,即臼齿或前臼齿。在初始分类之后,我们使用基于牙齿邻域规则的字符串匹配技术来验证初始牙齿类别,从而为每颗牙齿分配与其在牙齿图表中的位置相对应的数字。在包含622颗牙齿的咬翼膜大数据集上,该方法的分类准确率达到89%,牙齿分类验证将整体牙齿分类准确率提高到92%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Classification of Teeth in Bitewing Dental Images Using OLPP
Teeth classification is an important component in building an Automated Dental Identification System (ADIS) as part of creating a data structure that guides tooth-to-tooth matching. This aids in avoiding illogical comparisons that both inefficiently consume the limited computational resources and mislead decision-making. We tackle this problem by using low computational-cost, appearance-based Orthogonal Locality Preserving Projection (OLPP) algorithm to assign an initial class, i.e. molar or premolar to the teeth in bitewing dental images. After this initial classification, we use a string matching technique, based on teeth neighborhood rules, to validate initial teeth-classes and thus assign each tooth a number corresponding to its location in the dental chart. On a large dataset of bitewing films that contain 622 teeth, the proposed approach achieves classification accuracy of 89% and teeth class validation enhances the overall teeth classification accuracy to 92%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detailed Comparative Analysis of VP8 and H.264 Enhancing the MST-CSS Representation Using Robust Geometric Features, for Efficient Content Based Video Retrieval (CBVR) A Standardized Metadata Set for Annotation of Virtual and Remote Laboratories Using Wavelets and Gaussian Mixture Models for Audio Classification A Data Aware Admission Control Technique for Social Live Streams (SOLISs)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1