轨迹群模式的完整集合枚举

Xiaoliang Geng, Takuya Takagi, Hiroki Arimura, T. Uno
{"title":"轨迹群模式的完整集合枚举","authors":"Xiaoliang Geng, Takuya Takagi, Hiroki Arimura, T. Uno","doi":"10.1145/2676552.2676560","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the problem of mining the complete set of spatio-temporal patterns, called maximal-duration flock patterns (Gudmundsson and van Kreveld, Proc. ACM GIS 2006) from massive mobile GPS location streams. Such algorithms are useful for mining and analysis of real-time geographic streams in geographic information systems. Although a polynomial time algorithm exists for finding a maximal-duration flock pattern from a collection of trajectories, it has not been known whether it is possible to find all maximal-duration flock patterns with theoretical guarantee of its computational complexity. For this problem, we present efficient depth-first algorithms for finding all maximal-duration patterns in a collection of trajectories without duplicates that run in polynomial time per discovered pattern using polynomial space in the total size of input trajectories. To achieve the output-sensitive complexity above, our algorithms adopt depth-first search strategy to avoid the use of exponentially large memory. We also propose a speed-up technique using geometric indexes. Finally, we show experimental results on artificial data to evaluate the proposed algorithms.","PeriodicalId":272840,"journal":{"name":"Proceedings of the 5th ACM SIGSPATIAL International Workshop on GeoStreaming","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Enumeration of complete set of flock patterns in trajectories\",\"authors\":\"Xiaoliang Geng, Takuya Takagi, Hiroki Arimura, T. Uno\",\"doi\":\"10.1145/2676552.2676560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the problem of mining the complete set of spatio-temporal patterns, called maximal-duration flock patterns (Gudmundsson and van Kreveld, Proc. ACM GIS 2006) from massive mobile GPS location streams. Such algorithms are useful for mining and analysis of real-time geographic streams in geographic information systems. Although a polynomial time algorithm exists for finding a maximal-duration flock pattern from a collection of trajectories, it has not been known whether it is possible to find all maximal-duration flock patterns with theoretical guarantee of its computational complexity. For this problem, we present efficient depth-first algorithms for finding all maximal-duration patterns in a collection of trajectories without duplicates that run in polynomial time per discovered pattern using polynomial space in the total size of input trajectories. To achieve the output-sensitive complexity above, our algorithms adopt depth-first search strategy to avoid the use of exponentially large memory. We also propose a speed-up technique using geometric indexes. Finally, we show experimental results on artificial data to evaluate the proposed algorithms.\",\"PeriodicalId\":272840,\"journal\":{\"name\":\"Proceedings of the 5th ACM SIGSPATIAL International Workshop on GeoStreaming\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th ACM SIGSPATIAL International Workshop on GeoStreaming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2676552.2676560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th ACM SIGSPATIAL International Workshop on GeoStreaming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2676552.2676560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在本文中,我们考虑了从大量移动GPS位置流中挖掘完整的时空模式集的问题,称为最大持续时间群模式(Gudmundsson和van Kreveld, Proc. ACM GIS 2006)。这些算法对于地理信息系统中实时地理流的挖掘和分析是有用的。虽然存在从轨迹集合中寻找最大持续时间群模式的多项式时间算法,但是否有可能在理论保证其计算复杂度的情况下找到所有最大持续时间群模式尚不清楚。对于这个问题,我们提出了有效的深度优先算法,用于在轨迹集合中找到所有最大持续时间的模式,这些模式没有重复,每个发现的模式在输入轨迹的总大小中使用多项式空间以多项式时间运行。为了实现上述输出敏感的复杂性,我们的算法采用深度优先搜索策略,以避免使用指数级大的内存。我们还提出了一种使用几何指数的加速技术。最后,我们给出了人工数据的实验结果来评估所提出的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enumeration of complete set of flock patterns in trajectories
In this paper, we consider the problem of mining the complete set of spatio-temporal patterns, called maximal-duration flock patterns (Gudmundsson and van Kreveld, Proc. ACM GIS 2006) from massive mobile GPS location streams. Such algorithms are useful for mining and analysis of real-time geographic streams in geographic information systems. Although a polynomial time algorithm exists for finding a maximal-duration flock pattern from a collection of trajectories, it has not been known whether it is possible to find all maximal-duration flock patterns with theoretical guarantee of its computational complexity. For this problem, we present efficient depth-first algorithms for finding all maximal-duration patterns in a collection of trajectories without duplicates that run in polynomial time per discovered pattern using polynomial space in the total size of input trajectories. To achieve the output-sensitive complexity above, our algorithms adopt depth-first search strategy to avoid the use of exponentially large memory. We also propose a speed-up technique using geometric indexes. Finally, we show experimental results on artificial data to evaluate the proposed algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling movement patterns using topological relations between a directed line and a region Shopaholic: a crowd-sourced spatio-temporal product-deals evaluation system (demo paper) Processing real-time sensor data streams for 3D web visualization Crowd-sourced prediction of pedestrian congestion for bike navigation systems Road network compression techniques in spatiotemporal embedded systems: a survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1