{"title":"PM3:内存中处理的电源建模和电源管理","authors":"Chao Zhang, Tong Meng, Guangyu Sun","doi":"10.1109/HPCA.2018.00054","DOIUrl":null,"url":null,"abstract":"Processing-in-Memory (PIM) has been proposed as a solution to accelerate data-intensive applications, such as real-time Big Data processing and neural networks. The acceleration of data processing using a PIM relies on its high internal memory bandwidth, which always comes with the cost of high power consumption. Consequently, it is important to have a comprehensive quantitative study of the power modeling and power management for such PIM architectures. In this work, we first model the relationship between the power consumption and the internal bandwidth of PIM. This model not only provides a guidance for PIM designs but also demonstrates the potential of power management via bandwidth throttling. Based on bandwidth throttling, we propose three techniques, Power-Aware Subtask Throttling (PAST), Processing Unit Boost (PUB), and Power Sprinting (PS), to improve the energy efficiency and performance. In order to demonstrate the universality of the proposed methods, we applied them to two kinds of popular PIM designs. Evaluations show that the performance of PIM can be further improved if the power consumption is carefully controlled. Targeting at the same performance, the peak power consumption of HMC-based PIM can be reduced from 20W to 15W. The proposed power management schemes improve the speedup of prior RRAM-based PIM from 69 × to 273 ×, after pushing the power usage from about 1W to 10W safely. The model also shows that emerging RRAM is more suitable for large processing-in-memory designs, due to its low power cost to store the data.","PeriodicalId":154694,"journal":{"name":"2018 IEEE International Symposium on High Performance Computer Architecture (HPCA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"PM3: Power Modeling and Power Management for Processing-in-Memory\",\"authors\":\"Chao Zhang, Tong Meng, Guangyu Sun\",\"doi\":\"10.1109/HPCA.2018.00054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Processing-in-Memory (PIM) has been proposed as a solution to accelerate data-intensive applications, such as real-time Big Data processing and neural networks. The acceleration of data processing using a PIM relies on its high internal memory bandwidth, which always comes with the cost of high power consumption. Consequently, it is important to have a comprehensive quantitative study of the power modeling and power management for such PIM architectures. In this work, we first model the relationship between the power consumption and the internal bandwidth of PIM. This model not only provides a guidance for PIM designs but also demonstrates the potential of power management via bandwidth throttling. Based on bandwidth throttling, we propose three techniques, Power-Aware Subtask Throttling (PAST), Processing Unit Boost (PUB), and Power Sprinting (PS), to improve the energy efficiency and performance. In order to demonstrate the universality of the proposed methods, we applied them to two kinds of popular PIM designs. Evaluations show that the performance of PIM can be further improved if the power consumption is carefully controlled. Targeting at the same performance, the peak power consumption of HMC-based PIM can be reduced from 20W to 15W. The proposed power management schemes improve the speedup of prior RRAM-based PIM from 69 × to 273 ×, after pushing the power usage from about 1W to 10W safely. The model also shows that emerging RRAM is more suitable for large processing-in-memory designs, due to its low power cost to store the data.\",\"PeriodicalId\":154694,\"journal\":{\"name\":\"2018 IEEE International Symposium on High Performance Computer Architecture (HPCA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on High Performance Computer Architecture (HPCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCA.2018.00054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on High Performance Computer Architecture (HPCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2018.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PM3: Power Modeling and Power Management for Processing-in-Memory
Processing-in-Memory (PIM) has been proposed as a solution to accelerate data-intensive applications, such as real-time Big Data processing and neural networks. The acceleration of data processing using a PIM relies on its high internal memory bandwidth, which always comes with the cost of high power consumption. Consequently, it is important to have a comprehensive quantitative study of the power modeling and power management for such PIM architectures. In this work, we first model the relationship between the power consumption and the internal bandwidth of PIM. This model not only provides a guidance for PIM designs but also demonstrates the potential of power management via bandwidth throttling. Based on bandwidth throttling, we propose three techniques, Power-Aware Subtask Throttling (PAST), Processing Unit Boost (PUB), and Power Sprinting (PS), to improve the energy efficiency and performance. In order to demonstrate the universality of the proposed methods, we applied them to two kinds of popular PIM designs. Evaluations show that the performance of PIM can be further improved if the power consumption is carefully controlled. Targeting at the same performance, the peak power consumption of HMC-based PIM can be reduced from 20W to 15W. The proposed power management schemes improve the speedup of prior RRAM-based PIM from 69 × to 273 ×, after pushing the power usage from about 1W to 10W safely. The model also shows that emerging RRAM is more suitable for large processing-in-memory designs, due to its low power cost to store the data.