基于YCbCr模型的伪装图像阴影检测与去除方法

Isha Padhy, P. Kanungo, S. Sahoo
{"title":"基于YCbCr模型的伪装图像阴影检测与去除方法","authors":"Isha Padhy, P. Kanungo, S. Sahoo","doi":"10.1109/OCIT56763.2022.00112","DOIUrl":null,"url":null,"abstract":"A shadow in an image can disturb the actual outcome in computer vision and pattern recognition applications. The reason is that the shadow will act as an individual object resulting in the false interpretation and performance degradation of subsequent computer vision tasks. Here we propose a process to detect and remove shadows from an image using the YCbCr colour model. A small portion of the image is identified as a shadow area. The features at the pixel level and along the boundaries in the shadow area are learned. A method based on the locations of the border of the shadow is applied to remove the shadow. Experiments have been conducted on the benchmark camouflaged image dataset and the non-camouflaged image dataset to evaluate the approach. The methodology achieves promising performance in detecting and removing shadows from an image.","PeriodicalId":425541,"journal":{"name":"2022 OITS International Conference on Information Technology (OCIT)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A YCbCr Model Based Shadow Detection and Removal Approach On Camouflaged Images\",\"authors\":\"Isha Padhy, P. Kanungo, S. Sahoo\",\"doi\":\"10.1109/OCIT56763.2022.00112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A shadow in an image can disturb the actual outcome in computer vision and pattern recognition applications. The reason is that the shadow will act as an individual object resulting in the false interpretation and performance degradation of subsequent computer vision tasks. Here we propose a process to detect and remove shadows from an image using the YCbCr colour model. A small portion of the image is identified as a shadow area. The features at the pixel level and along the boundaries in the shadow area are learned. A method based on the locations of the border of the shadow is applied to remove the shadow. Experiments have been conducted on the benchmark camouflaged image dataset and the non-camouflaged image dataset to evaluate the approach. The methodology achieves promising performance in detecting and removing shadows from an image.\",\"PeriodicalId\":425541,\"journal\":{\"name\":\"2022 OITS International Conference on Information Technology (OCIT)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 OITS International Conference on Information Technology (OCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCIT56763.2022.00112\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 OITS International Conference on Information Technology (OCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCIT56763.2022.00112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在计算机视觉和模式识别应用中,图像中的阴影会干扰实际结果。原因是阴影将作为一个单独的对象,导致后续计算机视觉任务的错误解释和性能下降。在这里,我们提出了一种使用YCbCr颜色模型从图像中检测和去除阴影的过程。图像的一小部分被识别为阴影区域。学习了像素级和阴影区域边界的特征。采用基于阴影边缘位置的方法去除阴影。在基准伪装图像数据集和非伪装图像数据集上进行了实验来评估该方法。该方法在检测和去除图像阴影方面取得了令人满意的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A YCbCr Model Based Shadow Detection and Removal Approach On Camouflaged Images
A shadow in an image can disturb the actual outcome in computer vision and pattern recognition applications. The reason is that the shadow will act as an individual object resulting in the false interpretation and performance degradation of subsequent computer vision tasks. Here we propose a process to detect and remove shadows from an image using the YCbCr colour model. A small portion of the image is identified as a shadow area. The features at the pixel level and along the boundaries in the shadow area are learned. A method based on the locations of the border of the shadow is applied to remove the shadow. Experiments have been conducted on the benchmark camouflaged image dataset and the non-camouflaged image dataset to evaluate the approach. The methodology achieves promising performance in detecting and removing shadows from an image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visualization of 3D Point Clouds for Vehicle Detection Based on LiDAR and Camera Fusion Distributed Self Intermittent Fault outlier identification technique for WSN s Vision-Based Detection of Hospital and Police Station Scene Natural Question Generation using Transformers and Reinforcement Learning Edge Intelligence Based Mitigation of False Data Injection Attack In IoMT Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1