PPV:协同增强现实中对象引用的像素点体分割

Kuo-Chin Lien, B. Nuernberger, Tobias Höllerer, M. Turk
{"title":"PPV:协同增强现实中对象引用的像素点体分割","authors":"Kuo-Chin Lien, B. Nuernberger, Tobias Höllerer, M. Turk","doi":"10.1109/ISMAR.2016.21","DOIUrl":null,"url":null,"abstract":"We present a method for collaborative augmented reality (AR) that enables users from different viewpoints to interpret object references specified via 2D on-screen circling gestures. Based on a user's 2D drawing annotation, the method segments out the userselected object using an incomplete or imperfect scene model and the color image from the drawing viewpoint. Specifically, we propose a novel segmentation algorithm that utilizes both 2D and 3D scene cues, structured into a three-layer graph of pixels, 3D points, and volumes (supervoxels), solved via standard graph cut algorithms. This segmentation enables an appropriate rendering of the user's 2D annotation from other viewpoints in 3D augmented reality. Results demonstrate the superiority of the proposed method over existing methods.","PeriodicalId":146808,"journal":{"name":"2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"PPV: Pixel-Point-Volume Segmentation for Object Referencing in Collaborative Augmented Reality\",\"authors\":\"Kuo-Chin Lien, B. Nuernberger, Tobias Höllerer, M. Turk\",\"doi\":\"10.1109/ISMAR.2016.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method for collaborative augmented reality (AR) that enables users from different viewpoints to interpret object references specified via 2D on-screen circling gestures. Based on a user's 2D drawing annotation, the method segments out the userselected object using an incomplete or imperfect scene model and the color image from the drawing viewpoint. Specifically, we propose a novel segmentation algorithm that utilizes both 2D and 3D scene cues, structured into a three-layer graph of pixels, 3D points, and volumes (supervoxels), solved via standard graph cut algorithms. This segmentation enables an appropriate rendering of the user's 2D annotation from other viewpoints in 3D augmented reality. Results demonstrate the superiority of the proposed method over existing methods.\",\"PeriodicalId\":146808,\"journal\":{\"name\":\"2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMAR.2016.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Mixed and Augmented Reality (ISMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMAR.2016.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们提出了一种协作增强现实(AR)方法,使用户能够从不同的角度解释通过2D屏幕上的圆形手势指定的对象引用。该方法基于用户的2D绘图注释,使用不完整或不完美的场景模型和绘图角度的彩色图像分割出用户选择的对象。具体来说,我们提出了一种新的分割算法,该算法利用2D和3D场景线索,构建成像素、3D点和体积(超体素)的三层图,通过标准图切算法求解。这种分割可以在3D增强现实中从其他角度适当渲染用户的2D注释。结果表明,该方法优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PPV: Pixel-Point-Volume Segmentation for Object Referencing in Collaborative Augmented Reality
We present a method for collaborative augmented reality (AR) that enables users from different viewpoints to interpret object references specified via 2D on-screen circling gestures. Based on a user's 2D drawing annotation, the method segments out the userselected object using an incomplete or imperfect scene model and the color image from the drawing viewpoint. Specifically, we propose a novel segmentation algorithm that utilizes both 2D and 3D scene cues, structured into a three-layer graph of pixels, 3D points, and volumes (supervoxels), solved via standard graph cut algorithms. This segmentation enables an appropriate rendering of the user's 2D annotation from other viewpoints in 3D augmented reality. Results demonstrate the superiority of the proposed method over existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Influence of using Augmented Reality on Textbook Support for Learners of Different Learning Styles Practical and Precise Projector-Camera Calibration Augmented Reality 3D Discrepancy Check in Industrial Applications Learning to Fuse: A Deep Learning Approach to Visual-Inertial Camera Pose Estimation Analysis of Medium Wrap Freehand Virtual Object Grasping in Exocentric Mixed Reality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1