使用类别特定特征对多元时间序列进行分类的CNN方法

Yifan Hao, H. Cao, Erick Draayer
{"title":"使用类别特定特征对多元时间序列进行分类的CNN方法","authors":"Yifan Hao, H. Cao, Erick Draayer","doi":"10.1109/SMDS49396.2020.00008","DOIUrl":null,"url":null,"abstract":"Many smart data services (e.g., smart energy, smart homes) collect and utilize time series data (e.g., energy production and consumption, human body movement) to conduct data analysis. Among such analysis tasks, classification is a widely utilized technique to provide data-driven solutions. Most existing classification methods extract a single set of features from the data and use this feature set for classification across multiple classes. This often ignores the reality that different and class-specific subsets of the initial feature set may better facilitate classification. In this paper, we propose two convolutional neural network (CNN) models using class-specific variables to solve the multi-class classification problem over multivariate time series (MTS) data. A new loss function is introduced for training the CNN models. We compare our proposed methods with 13 baseline approaches using 14 real datasets. The extensive experimental results show that our new approaches can not only outperform other methods on classification accuracy, but also successfully identify important class-specific variables.","PeriodicalId":385149,"journal":{"name":"2020 IEEE International Conference on Smart Data Services (SMDS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CNN Approaches to Classify Multivariate Time Series Using Class-specific Features\",\"authors\":\"Yifan Hao, H. Cao, Erick Draayer\",\"doi\":\"10.1109/SMDS49396.2020.00008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many smart data services (e.g., smart energy, smart homes) collect and utilize time series data (e.g., energy production and consumption, human body movement) to conduct data analysis. Among such analysis tasks, classification is a widely utilized technique to provide data-driven solutions. Most existing classification methods extract a single set of features from the data and use this feature set for classification across multiple classes. This often ignores the reality that different and class-specific subsets of the initial feature set may better facilitate classification. In this paper, we propose two convolutional neural network (CNN) models using class-specific variables to solve the multi-class classification problem over multivariate time series (MTS) data. A new loss function is introduced for training the CNN models. We compare our proposed methods with 13 baseline approaches using 14 real datasets. The extensive experimental results show that our new approaches can not only outperform other methods on classification accuracy, but also successfully identify important class-specific variables.\",\"PeriodicalId\":385149,\"journal\":{\"name\":\"2020 IEEE International Conference on Smart Data Services (SMDS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Smart Data Services (SMDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMDS49396.2020.00008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Smart Data Services (SMDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMDS49396.2020.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

许多智能数据服务(如智能能源、智能家居)收集和利用时间序列数据(如能源生产和消耗、人体运动)进行数据分析。在这些分析任务中,分类是一种广泛使用的技术,用于提供数据驱动的解决方案。大多数现有的分类方法从数据中提取一组特征,并使用该特征集跨多个类进行分类。这往往忽略了一个事实,即初始特征集的不同和特定于类的子集可能更有利于分类。在本文中,我们提出了两个卷积神经网络(CNN)模型,使用特定于类别的变量来解决多变量时间序列(MTS)数据上的多类别分类问题。引入了一种新的损失函数来训练CNN模型。我们将我们提出的方法与使用14个真实数据集的13种基线方法进行了比较。大量的实验结果表明,我们的新方法不仅在分类精度上优于其他方法,而且能够成功地识别出重要的类特定变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CNN Approaches to Classify Multivariate Time Series Using Class-specific Features
Many smart data services (e.g., smart energy, smart homes) collect and utilize time series data (e.g., energy production and consumption, human body movement) to conduct data analysis. Among such analysis tasks, classification is a widely utilized technique to provide data-driven solutions. Most existing classification methods extract a single set of features from the data and use this feature set for classification across multiple classes. This often ignores the reality that different and class-specific subsets of the initial feature set may better facilitate classification. In this paper, we propose two convolutional neural network (CNN) models using class-specific variables to solve the multi-class classification problem over multivariate time series (MTS) data. A new loss function is introduced for training the CNN models. We compare our proposed methods with 13 baseline approaches using 14 real datasets. The extensive experimental results show that our new approaches can not only outperform other methods on classification accuracy, but also successfully identify important class-specific variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
S3QLRDF: Property Table Partitioning Scheme for Distributed SPARQL Querying of large-scale RDF data BC-Sketch: A Simple Reversible Sketch for Detecting Network Anomalies 2020 IEEE International Conference on Smart Data Services (SMDS) SMDS 2020 Scalable and Hybrid Ensemble-Based Causality Discovery Stargazer: A Deep Learning Approach for Estimating the Performance of Edge- Based Clustering Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1