DASM:用于对象自动配准的开源活动形状模型

David Macurak, Amrutha Sethuram, K. Ricanek, B. Barbour
{"title":"DASM:用于对象自动配准的开源活动形状模型","authors":"David Macurak, Amrutha Sethuram, K. Ricanek, B. Barbour","doi":"10.1109/NCVPRIPG.2013.6776244","DOIUrl":null,"url":null,"abstract":"The main contribution of this paper is to introduce DASM - Dynamic Active Shape Models, an open source software for the automatic detection of fiducial points on objects for subsequent registration, to the research community. DASM leverages the tremendous work of STASM, a well known software library for automatic detection of points on faces. In this work we compare DASM to other well-known techniques for automatic face registration: Active Appearance Models (AAM) and Constrained Local Models (CLM). Further we show that DASM outperforms these techniques on a per registration-point error, average object error, and on cumulative error distribution. As a follow on, we show that DASM outperforms STASM v3.1 on model training and registration by leveraging open source libraries for computer vision (OpenCV v2.4) and threading/parallelism (OpenMP). The improvements in speed and performance of DASM allows for extremely dense registration, 252 points on the face, in video applications.","PeriodicalId":436402,"journal":{"name":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DASM: An open source active shape model for automatic registration of objects\",\"authors\":\"David Macurak, Amrutha Sethuram, K. Ricanek, B. Barbour\",\"doi\":\"10.1109/NCVPRIPG.2013.6776244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main contribution of this paper is to introduce DASM - Dynamic Active Shape Models, an open source software for the automatic detection of fiducial points on objects for subsequent registration, to the research community. DASM leverages the tremendous work of STASM, a well known software library for automatic detection of points on faces. In this work we compare DASM to other well-known techniques for automatic face registration: Active Appearance Models (AAM) and Constrained Local Models (CLM). Further we show that DASM outperforms these techniques on a per registration-point error, average object error, and on cumulative error distribution. As a follow on, we show that DASM outperforms STASM v3.1 on model training and registration by leveraging open source libraries for computer vision (OpenCV v2.4) and threading/parallelism (OpenMP). The improvements in speed and performance of DASM allows for extremely dense registration, 252 points on the face, in video applications.\",\"PeriodicalId\":436402,\"journal\":{\"name\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCVPRIPG.2013.6776244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCVPRIPG.2013.6776244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要贡献是将DASM (Dynamic Active Shape Models)这一开源软件引入研究领域,该软件用于自动检测物体上的基准点以进行后续配准。DASM利用STASM的巨大工作,STASM是一个著名的软件库,用于自动检测人脸上的点。在这项工作中,我们将DASM与其他著名的自动人脸配准技术进行了比较:主动外观模型(AAM)和约束局部模型(CLM)。我们进一步表明,DASM在每个配准点误差、平均对象误差和累积误差分布上优于这些技术。接下来,我们通过利用计算机视觉的开源库(OpenCV v2.4)和线程/并行性(OpenMP),证明DASM在模型训练和注册方面优于STASM v3.1。DASM在速度和性能上的改进允许在视频应用中进行极其密集的配准,在面部上有252个点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DASM: An open source active shape model for automatic registration of objects
The main contribution of this paper is to introduce DASM - Dynamic Active Shape Models, an open source software for the automatic detection of fiducial points on objects for subsequent registration, to the research community. DASM leverages the tremendous work of STASM, a well known software library for automatic detection of points on faces. In this work we compare DASM to other well-known techniques for automatic face registration: Active Appearance Models (AAM) and Constrained Local Models (CLM). Further we show that DASM outperforms these techniques on a per registration-point error, average object error, and on cumulative error distribution. As a follow on, we show that DASM outperforms STASM v3.1 on model training and registration by leveraging open source libraries for computer vision (OpenCV v2.4) and threading/parallelism (OpenMP). The improvements in speed and performance of DASM allows for extremely dense registration, 252 points on the face, in video applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image deblurring in super-resolution framework Surface fitting in SPECT imaging useful for detecting Parkinson's Disease and Scans Without Evidence of Dopaminergic Deficit Automatic number plate recognition system using modified stroke width transform UKF based multi-component phase estimation in digital holographic Moiré Feature preserving anisotropic diffusion for image restoration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1