里德:可靠的节能RAID

Shu Yin, Xuewu Li, Kenli Li, Jianzhong Huang, X. Ruan, Xiaomin Zhu, Wei Cao, X. Qin
{"title":"里德:可靠的节能RAID","authors":"Shu Yin, Xuewu Li, Kenli Li, Jianzhong Huang, X. Ruan, Xiaomin Zhu, Wei Cao, X. Qin","doi":"10.1109/ICPP.2015.74","DOIUrl":null,"url":null,"abstract":"Recent studies indicate that the energy cost and carbon footprint of data centers have become exorbitant. It is a demanding and challenging task to reduce energy consumption in large-scale storage systems in modern data centers. Most energy conservation techniques inevitably have adverse impacts on parallel disk systems. To address the reliability issues of energy-efficient parallel disks, we propose a reliable energy-efficient RAID system called REED, which aims at improving both energy efficiency and reliability of RAID systems by seamlessly integrating HDDs and SSDs. At the heart of REED is a high-performance cache mechanism powered by SSDs, which are serving popular data. Under light workload conditions, REED spins down HDDs into the low-power mode, thereby offering energy conservation. Importantly, during an I/O access turbulence (i.e., I/O load is dynamically and frequently changing), REED is conducive to reducing the number of disk power-state transitions by keeping HDDs in the low-power mode while serving requests with SSDs. We build a model to quantitatively show that REED is capable of improving the reliability of energy-efficient RAIDs. We implement the REED prototype in a real-world RAID-0 system. Our experimental results demonstrate that REED improves the energy-efficiency of conventional RAID-0 by up to 73% while maintaining good reliability.","PeriodicalId":423007,"journal":{"name":"2015 44th International Conference on Parallel Processing","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"REED: A Reliable Energy-Efficient RAID\",\"authors\":\"Shu Yin, Xuewu Li, Kenli Li, Jianzhong Huang, X. Ruan, Xiaomin Zhu, Wei Cao, X. Qin\",\"doi\":\"10.1109/ICPP.2015.74\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent studies indicate that the energy cost and carbon footprint of data centers have become exorbitant. It is a demanding and challenging task to reduce energy consumption in large-scale storage systems in modern data centers. Most energy conservation techniques inevitably have adverse impacts on parallel disk systems. To address the reliability issues of energy-efficient parallel disks, we propose a reliable energy-efficient RAID system called REED, which aims at improving both energy efficiency and reliability of RAID systems by seamlessly integrating HDDs and SSDs. At the heart of REED is a high-performance cache mechanism powered by SSDs, which are serving popular data. Under light workload conditions, REED spins down HDDs into the low-power mode, thereby offering energy conservation. Importantly, during an I/O access turbulence (i.e., I/O load is dynamically and frequently changing), REED is conducive to reducing the number of disk power-state transitions by keeping HDDs in the low-power mode while serving requests with SSDs. We build a model to quantitatively show that REED is capable of improving the reliability of energy-efficient RAIDs. We implement the REED prototype in a real-world RAID-0 system. Our experimental results demonstrate that REED improves the energy-efficiency of conventional RAID-0 by up to 73% while maintaining good reliability.\",\"PeriodicalId\":423007,\"journal\":{\"name\":\"2015 44th International Conference on Parallel Processing\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 44th International Conference on Parallel Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.2015.74\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 44th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2015.74","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

最近的研究表明,数据中心的能源成本和碳足迹已经变得过高。在现代数据中心中,如何降低大型存储系统的能耗是一项艰巨而富有挑战性的任务。大多数节能技术不可避免地对并行磁盘系统产生不利影响。为了解决节能并行磁盘的可靠性问题,我们提出了一种可靠的节能RAID系统,称为REED,旨在通过无缝集成hdd和ssd来提高RAID系统的能效和可靠性。REED的核心是由ssd提供支持的高性能缓存机制,ssd提供流行数据。在轻工作负载条件下,REED将hdd旋转到低功耗模式,从而提供节能。重要的是,在I/O访问动荡期间(即,I/O负载是动态和频繁变化的),REED有助于通过将hdd保持在低功耗模式,同时使用ssd处理请求,从而减少磁盘电源状态转换的数量。我们建立了一个模型,定量地表明REED能够提高节能raid的可靠性。我们在真实的RAID-0系统中实现了REED原型。我们的实验结果表明,REED在保持良好可靠性的同时,将传统RAID-0的能效提高了73%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
REED: A Reliable Energy-Efficient RAID
Recent studies indicate that the energy cost and carbon footprint of data centers have become exorbitant. It is a demanding and challenging task to reduce energy consumption in large-scale storage systems in modern data centers. Most energy conservation techniques inevitably have adverse impacts on parallel disk systems. To address the reliability issues of energy-efficient parallel disks, we propose a reliable energy-efficient RAID system called REED, which aims at improving both energy efficiency and reliability of RAID systems by seamlessly integrating HDDs and SSDs. At the heart of REED is a high-performance cache mechanism powered by SSDs, which are serving popular data. Under light workload conditions, REED spins down HDDs into the low-power mode, thereby offering energy conservation. Importantly, during an I/O access turbulence (i.e., I/O load is dynamically and frequently changing), REED is conducive to reducing the number of disk power-state transitions by keeping HDDs in the low-power mode while serving requests with SSDs. We build a model to quantitatively show that REED is capable of improving the reliability of energy-efficient RAIDs. We implement the REED prototype in a real-world RAID-0 system. Our experimental results demonstrate that REED improves the energy-efficiency of conventional RAID-0 by up to 73% while maintaining good reliability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Elastic and Efficient Virtual Network Provisioning for Cloud-Based Multi-tier Applications Design and Implementation of a Highly Efficient DGEMM for 64-Bit ARMv8 Multi-core Processors Leveraging Error Compensation to Minimize Time Deviation in Parallel Multi-core Simulations Crowdsourcing Sensing Workloads of Heterogeneous Tasks: A Distributed Fairness-Aware Approach TAPS: Software Defined Task-Level Deadline-Aware Preemptive Flow Scheduling in Data Centers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1