Xing Fang, Lizhao You, Qiao Xiang, Hanyang Shao, Gao Han, Ziyi Wang, J. Shu, L. Kong
{"title":"使用顺序程序分析诊断分布式路由配置","authors":"Xing Fang, Lizhao You, Qiao Xiang, Hanyang Shao, Gao Han, Ziyi Wang, J. Shu, L. Kong","doi":"10.1145/3600061.3600065","DOIUrl":null,"url":null,"abstract":"In this paper, we show that by capturing the causal relationship among the computation of routers, one can transform the distributed program composed of routing processes into a sequential program, which allows the use of various sequential program analysis theories and tools for diagnosing and repairing routing configuration errors. This insight sheds light on future research on automatic network configuration diagnosis and repair. To demonstrate its feasibility and generality, we give the preliminary design of two methods for routing configuration error diagnosis: (1) data flow analysis using minimal unsatisfiable core and error invariants; and (2) control flow analysis using selective symbolic execution. Using real-world topologies and synthetic configurations, we show that both methods can effectively find errors in routing configurations while incurring reasonable overhead.","PeriodicalId":228934,"journal":{"name":"Proceedings of the 7th Asia-Pacific Workshop on Networking","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Diagnosing Distributed Routing Configurations Using Sequential Program Analysis\",\"authors\":\"Xing Fang, Lizhao You, Qiao Xiang, Hanyang Shao, Gao Han, Ziyi Wang, J. Shu, L. Kong\",\"doi\":\"10.1145/3600061.3600065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show that by capturing the causal relationship among the computation of routers, one can transform the distributed program composed of routing processes into a sequential program, which allows the use of various sequential program analysis theories and tools for diagnosing and repairing routing configuration errors. This insight sheds light on future research on automatic network configuration diagnosis and repair. To demonstrate its feasibility and generality, we give the preliminary design of two methods for routing configuration error diagnosis: (1) data flow analysis using minimal unsatisfiable core and error invariants; and (2) control flow analysis using selective symbolic execution. Using real-world topologies and synthetic configurations, we show that both methods can effectively find errors in routing configurations while incurring reasonable overhead.\",\"PeriodicalId\":228934,\"journal\":{\"name\":\"Proceedings of the 7th Asia-Pacific Workshop on Networking\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 7th Asia-Pacific Workshop on Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3600061.3600065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th Asia-Pacific Workshop on Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3600061.3600065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diagnosing Distributed Routing Configurations Using Sequential Program Analysis
In this paper, we show that by capturing the causal relationship among the computation of routers, one can transform the distributed program composed of routing processes into a sequential program, which allows the use of various sequential program analysis theories and tools for diagnosing and repairing routing configuration errors. This insight sheds light on future research on automatic network configuration diagnosis and repair. To demonstrate its feasibility and generality, we give the preliminary design of two methods for routing configuration error diagnosis: (1) data flow analysis using minimal unsatisfiable core and error invariants; and (2) control flow analysis using selective symbolic execution. Using real-world topologies and synthetic configurations, we show that both methods can effectively find errors in routing configurations while incurring reasonable overhead.