“w00t !今天感觉很棒!“Twitter上的聊天:识别和流行。

Ramnath Balasubramanyan, A. Kolcz
{"title":"“w00t !今天感觉很棒!“Twitter上的聊天:识别和流行。","authors":"Ramnath Balasubramanyan, A. Kolcz","doi":"10.1145/2492517.2492611","DOIUrl":null,"url":null,"abstract":"Microblogging services like Twitter are used for a wide variety of purposes and in different modes. Here, we focus on the usage of Twitter for “chatter” i.e., the production and consumption of tweets that are typically non-topical and contain personal status updates or conversational messages which are usually intended and are useful only to the immediate network of the producers of the tweets. The automatic identification of chatter tweets is critical for tasks such as ranking tweets by relevance, matching tweets to advertisements, creation of topical digests of tweets, etc. and generally improves the utility of tweets to people outside the producers' immediate network by enabling the filtering out of tweets that are not of wider interest. We study the prevalence of chatter tweets in Twitter and present techniques to detect them using machine learning techniques that require minimal supervision.","PeriodicalId":442230,"journal":{"name":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"“w00t! feeling great today!” chatter in Twitter: identification and prevalence\",\"authors\":\"Ramnath Balasubramanyan, A. Kolcz\",\"doi\":\"10.1145/2492517.2492611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microblogging services like Twitter are used for a wide variety of purposes and in different modes. Here, we focus on the usage of Twitter for “chatter” i.e., the production and consumption of tweets that are typically non-topical and contain personal status updates or conversational messages which are usually intended and are useful only to the immediate network of the producers of the tweets. The automatic identification of chatter tweets is critical for tasks such as ranking tweets by relevance, matching tweets to advertisements, creation of topical digests of tweets, etc. and generally improves the utility of tweets to people outside the producers' immediate network by enabling the filtering out of tweets that are not of wider interest. We study the prevalence of chatter tweets in Twitter and present techniques to detect them using machine learning techniques that require minimal supervision.\",\"PeriodicalId\":442230,\"journal\":{\"name\":\"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2492517.2492611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2492517.2492611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

像Twitter这样的微博服务被用于各种各样的目的和不同的模式。在这里,我们专注于Twitter的“聊天”使用,即Twitter的生产和消费,这些推文通常是非主题的,包含个人状态更新或会话信息,这些信息通常只针对并且只对推文生产者的直接网络有用。聊天推文的自动识别对于诸如根据相关性对推文进行排名、将推文与广告匹配、创建推文的主题摘要等任务至关重要,并且通过过滤掉不具有广泛兴趣的推文,通常可以提高推文对生产者直接网络之外的人的效用。我们研究了Twitter中聊天推文的流行程度,并提出了使用机器学习技术检测它们的技术,这种技术需要最少的监督。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
“w00t! feeling great today!” chatter in Twitter: identification and prevalence
Microblogging services like Twitter are used for a wide variety of purposes and in different modes. Here, we focus on the usage of Twitter for “chatter” i.e., the production and consumption of tweets that are typically non-topical and contain personal status updates or conversational messages which are usually intended and are useful only to the immediate network of the producers of the tweets. The automatic identification of chatter tweets is critical for tasks such as ranking tweets by relevance, matching tweets to advertisements, creation of topical digests of tweets, etc. and generally improves the utility of tweets to people outside the producers' immediate network by enabling the filtering out of tweets that are not of wider interest. We study the prevalence of chatter tweets in Twitter and present techniques to detect them using machine learning techniques that require minimal supervision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical analysis and implications of SNS search in under-developed countries Identifying unreliable sources of skill and competency information Assessing group cohesion in homophily networks Exploiting online social data in ontology learning for event tracking and emergency response Event identification for social streams using keyword-based evolving graph sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1