走向自然的深度传播

Weicheng Huang, Xun Cao, K. Lu, Qionghai Dai, A. Bovik
{"title":"走向自然的深度传播","authors":"Weicheng Huang, Xun Cao, K. Lu, Qionghai Dai, A. Bovik","doi":"10.1109/IVMSPW.2013.6611934","DOIUrl":null,"url":null,"abstract":"We propose a two-stage depth propagation algorithm for semi-automatic 2D-to-3D video conversion that forces the solution towards statistical “naturalness”. First, both forward and backward motion vectors are estimated and compared to decide initial depth values, then a compensation process is adopted to further improve the depth initialization. Secondly, the luminance and initial depth are decomposed into a wavelet pyramid. Each sub-band of depth is inferred using a Bayesian formulation under a natural scene statistic prior assumption. This is incorporated into a propagation target function as a prior regularizing term. The final depth map associated with each frame of the input 2D video is optimized by composing all the sub-bands. Experimental results obtained on various sequences show that the presented method outperforms several state-of-the-art depth propagation methods.","PeriodicalId":170714,"journal":{"name":"IVMSP 2013","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Towards naturalistic depth propagation\",\"authors\":\"Weicheng Huang, Xun Cao, K. Lu, Qionghai Dai, A. Bovik\",\"doi\":\"10.1109/IVMSPW.2013.6611934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a two-stage depth propagation algorithm for semi-automatic 2D-to-3D video conversion that forces the solution towards statistical “naturalness”. First, both forward and backward motion vectors are estimated and compared to decide initial depth values, then a compensation process is adopted to further improve the depth initialization. Secondly, the luminance and initial depth are decomposed into a wavelet pyramid. Each sub-band of depth is inferred using a Bayesian formulation under a natural scene statistic prior assumption. This is incorporated into a propagation target function as a prior regularizing term. The final depth map associated with each frame of the input 2D video is optimized by composing all the sub-bands. Experimental results obtained on various sequences show that the presented method outperforms several state-of-the-art depth propagation methods.\",\"PeriodicalId\":170714,\"journal\":{\"name\":\"IVMSP 2013\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IVMSP 2013\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVMSPW.2013.6611934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IVMSP 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVMSPW.2013.6611934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了一种用于半自动2d到3d视频转换的两阶段深度传播算法,该算法迫使解决方案趋向于统计“自然性”。首先对前后运动矢量进行估计和比较,确定初始深度值,然后采用补偿过程进一步改进深度初始化。其次,将亮度和初始深度分解成小波金字塔;每个深度子带在自然场景统计先验假设下使用贝叶斯公式进行推断。这被合并到传播目标函数中作为一个先验正则化项。通过组合所有子带来优化与输入的2D视频的每帧相关的最终深度图。在不同序列上的实验结果表明,该方法优于几种最先进的深度传播方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards naturalistic depth propagation
We propose a two-stage depth propagation algorithm for semi-automatic 2D-to-3D video conversion that forces the solution towards statistical “naturalness”. First, both forward and backward motion vectors are estimated and compared to decide initial depth values, then a compensation process is adopted to further improve the depth initialization. Secondly, the luminance and initial depth are decomposed into a wavelet pyramid. Each sub-band of depth is inferred using a Bayesian formulation under a natural scene statistic prior assumption. This is incorporated into a propagation target function as a prior regularizing term. The final depth map associated with each frame of the input 2D video is optimized by composing all the sub-bands. Experimental results obtained on various sequences show that the presented method outperforms several state-of-the-art depth propagation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D activity measurement for stereoscopic video Flicker-free 3D shutter glasses by retardnace control of LC cell Multi-source inverse geometry CT(MS-IGCT) system: A new concept of 3D CT imaging Subjective assessment methodology for preference of experience in 3DTV Camera trajectory recovery for image-based city street modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1