基于观测系统模拟实验(OSSE)的高光谱红外探测仪云上温度和水汽反演评价

Jing Feng, Yi Huang, Z. Qu
{"title":"基于观测系统模拟实验(OSSE)的高光谱红外探测仪云上温度和水汽反演评价","authors":"Jing Feng, Yi Huang, Z. Qu","doi":"10.5194/AMT-2020-518","DOIUrl":null,"url":null,"abstract":"Abstract. Measuring atmospheric conditions above convective storms is challenging. This study finds that the uncertainties in cloud properties near the top of deep convective clouds have a non-negligible impact on the TOA infrared radiances which cannot be fully eliminated by adopting a slab-cloud assumption. To overcome this issue, a synergetic retrieval method is developed. This method integrates the infrared hyperspectral observations with cloud measurements from active sensors to retrieve atmospheric temperature, water vapor, and cloud properties simultaneously. Using an observation system simulation experiment (OSSE), we found that the retrieval method is capable of detecting the spatial distribution of temperature and humidity anomalies above convective storms and reducing the root-mean-square-errors in temperature and column integrated water vapor by more than half.\n","PeriodicalId":441110,"journal":{"name":"Atmospheric Measurement Techniques Discussions","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An observing system simulation experiment (OSSE)-based\\nassessment of the retrieval of above-cloud temperature and water\\nvapor using hyperspectral infrared sounder\",\"authors\":\"Jing Feng, Yi Huang, Z. Qu\",\"doi\":\"10.5194/AMT-2020-518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Measuring atmospheric conditions above convective storms is challenging. This study finds that the uncertainties in cloud properties near the top of deep convective clouds have a non-negligible impact on the TOA infrared radiances which cannot be fully eliminated by adopting a slab-cloud assumption. To overcome this issue, a synergetic retrieval method is developed. This method integrates the infrared hyperspectral observations with cloud measurements from active sensors to retrieve atmospheric temperature, water vapor, and cloud properties simultaneously. Using an observation system simulation experiment (OSSE), we found that the retrieval method is capable of detecting the spatial distribution of temperature and humidity anomalies above convective storms and reducing the root-mean-square-errors in temperature and column integrated water vapor by more than half.\\n\",\"PeriodicalId\":441110,\"journal\":{\"name\":\"Atmospheric Measurement Techniques Discussions\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Measurement Techniques Discussions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/AMT-2020-518\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/AMT-2020-518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要测量对流风暴上方的大气条件具有挑战性。研究发现,深层对流云顶部附近云性质的不确定性对TOA红外辐射有不可忽略的影响,采用板云假设不能完全消除这种影响。为了克服这一问题,开发了一种协同检索方法。该方法将红外高光谱观测与有源传感器的云测量相结合,同时获取大气温度、水蒸气和云的性质。通过观测系统模拟实验(OSSE),我们发现该方法能够探测到对流风暴上空温度和湿度异常的空间分布,并将温度和柱积分水汽的均方根误差降低了一半以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An observing system simulation experiment (OSSE)-based assessment of the retrieval of above-cloud temperature and water vapor using hyperspectral infrared sounder
Abstract. Measuring atmospheric conditions above convective storms is challenging. This study finds that the uncertainties in cloud properties near the top of deep convective clouds have a non-negligible impact on the TOA infrared radiances which cannot be fully eliminated by adopting a slab-cloud assumption. To overcome this issue, a synergetic retrieval method is developed. This method integrates the infrared hyperspectral observations with cloud measurements from active sensors to retrieve atmospheric temperature, water vapor, and cloud properties simultaneously. Using an observation system simulation experiment (OSSE), we found that the retrieval method is capable of detecting the spatial distribution of temperature and humidity anomalies above convective storms and reducing the root-mean-square-errors in temperature and column integrated water vapor by more than half.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved monitoring of shipping NO2 with TROPOMI: decreasing NOx emissions in European seas during the COVID-19 pandemic Continuous mapping of fine particulate matter (PM2.5) air quality in East Asia at daily 6×6 km2 resolution by application of a random forest algorithm to 2011–2019 GOCI geostationary satellite data Fill dynamics and sample mixing in the AirCore  Relative errors of derived multi-wavelengths intensive aerosol optical properties using CAPS_SSA, Nephelometer and TAP measurements Laboratory evaluation of the scattering matrix of ragweed, ash, birch and pine pollens towards pollen classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1