出行时间不确定性下的拼车平台订单调度:数据驱动的鲁棒优化方法

Xiaoming Li, Jie Gao, Chun Wang, Xiao Huang, Yimin Nie
{"title":"出行时间不确定性下的拼车平台订单调度:数据驱动的鲁棒优化方法","authors":"Xiaoming Li, Jie Gao, Chun Wang, Xiao Huang, Yimin Nie","doi":"10.1109/ICAS49788.2021.9551160","DOIUrl":null,"url":null,"abstract":"In this paper, we study a one-to-one matching ride-sharing problem to save the travellers’ total travel time considering travel time uncertainty. Unlike the existing work where the uncertainty set is assumed to be known or roughly estimated, in this work, we propose a learning-based robust optimization framework to handle the issue properly. Specifically, we assume the travel time varies in an uncertainty set which is predicted by a machine learning approach- ARIMA using travel time historical data, the predicted uncertainty set then serves as the input parameter for the robust optimization model. To evaluate the proposed approach, we conduct a group of numerical experiments based on New York taxi trip record data sets. The results show that our proposed data-driven robust optimization approach outperforms the robust optimization model with a given uncertainty set in terms of total travel time savings. Further, the proposed approach can improve the travel time savings up to 112.8%, and 34% by average. Most importantly, our proposed approach is capable of handling the uncertainty in a more effective way when the uncertainty degrees become high.","PeriodicalId":287105,"journal":{"name":"2021 IEEE International Conference on Autonomous Systems (ICAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Order Dispatching in Ride-Sharing Platform under Travel Time Uncertainty: A Data-Driven Robust Optimization Approach\",\"authors\":\"Xiaoming Li, Jie Gao, Chun Wang, Xiao Huang, Yimin Nie\",\"doi\":\"10.1109/ICAS49788.2021.9551160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study a one-to-one matching ride-sharing problem to save the travellers’ total travel time considering travel time uncertainty. Unlike the existing work where the uncertainty set is assumed to be known or roughly estimated, in this work, we propose a learning-based robust optimization framework to handle the issue properly. Specifically, we assume the travel time varies in an uncertainty set which is predicted by a machine learning approach- ARIMA using travel time historical data, the predicted uncertainty set then serves as the input parameter for the robust optimization model. To evaluate the proposed approach, we conduct a group of numerical experiments based on New York taxi trip record data sets. The results show that our proposed data-driven robust optimization approach outperforms the robust optimization model with a given uncertainty set in terms of total travel time savings. Further, the proposed approach can improve the travel time savings up to 112.8%, and 34% by average. Most importantly, our proposed approach is capable of handling the uncertainty in a more effective way when the uncertainty degrees become high.\",\"PeriodicalId\":287105,\"journal\":{\"name\":\"2021 IEEE International Conference on Autonomous Systems (ICAS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Autonomous Systems (ICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAS49788.2021.9551160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Autonomous Systems (ICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAS49788.2021.9551160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑出行时间的不确定性,研究了一种节省出行者总出行时间的一对一匹配拼车问题。与现有的假设不确定性集是已知或粗略估计的工作不同,在这项工作中,我们提出了一个基于学习的鲁棒优化框架来适当地处理这个问题。具体来说,我们假设旅行时间在一个不确定集合中变化,该不确定集合由机器学习方法- ARIMA使用旅行时间历史数据预测,然后预测的不确定集合作为鲁棒优化模型的输入参数。为了评估所提出的方法,我们进行了一组基于纽约出租车旅行记录数据集的数值实验。结果表明,我们提出的数据驱动鲁棒优化方法在总行程时间节省方面优于具有给定不确定性集的鲁棒优化模型。此外,该方法可将旅行时间节省高达112.8%,平均节省34%。最重要的是,当不确定性程度变高时,我们提出的方法能够更有效地处理不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Order Dispatching in Ride-Sharing Platform under Travel Time Uncertainty: A Data-Driven Robust Optimization Approach
In this paper, we study a one-to-one matching ride-sharing problem to save the travellers’ total travel time considering travel time uncertainty. Unlike the existing work where the uncertainty set is assumed to be known or roughly estimated, in this work, we propose a learning-based robust optimization framework to handle the issue properly. Specifically, we assume the travel time varies in an uncertainty set which is predicted by a machine learning approach- ARIMA using travel time historical data, the predicted uncertainty set then serves as the input parameter for the robust optimization model. To evaluate the proposed approach, we conduct a group of numerical experiments based on New York taxi trip record data sets. The results show that our proposed data-driven robust optimization approach outperforms the robust optimization model with a given uncertainty set in terms of total travel time savings. Further, the proposed approach can improve the travel time savings up to 112.8%, and 34% by average. Most importantly, our proposed approach is capable of handling the uncertainty in a more effective way when the uncertainty degrees become high.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Automated Search for Underwater Threats Using Multistatic Sensor Fields by Incorporating Unconfirmed Track Information Matching Models for Crowd-Shipping Considering Shipper’s Acceptance Uncertainty Observational Learning: Imitation Through an Adaptive Probabilistic Approach Simultaneous Calibration of Positions, Orientations, and Time Offsets, Among Multiple Microphone Arrays Modified crop health monitoring and pesticide spraying system using NDVI and Semantic Segmentation: An AGROCOPTER based approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1