从疼痛的面部自动检测动作单位:比较形状和外观特征

P. Lucey, J. Cohn, S. Lucey, S. Sridharan, K. Prkachin
{"title":"从疼痛的面部自动检测动作单位:比较形状和外观特征","authors":"P. Lucey, J. Cohn, S. Lucey, S. Sridharan, K. Prkachin","doi":"10.1109/CVPRW.2009.5204279","DOIUrl":null,"url":null,"abstract":"Recent psychological research suggests that facial movements are a reliable measure of pain. Automatic detection of facial movements associated with pain would contribute to patient care but is technically challenging. Facial movements may be subtle and accompanied by abrupt changes in head orientation. Active appearance models (AAM) have proven robust to naturally occurring facial behavior, yet AAM-based efforts to automatically detect action units (AUs) are few. Using image data from patients with rotator-cuff injuries, we describe an AAM-based automatic system that decouples shape and appearance to detect AUs on a frame-by-frame basis. Most current approaches to AU detection use only appearance features. We explored the relative efficacy of shape and appearance for AU detection. Consistent with the experience of human observers, we found specific relationships between action units and types of facial features. Several AU (e.g. AU4, 12, and 43) were more discriminable by shape than by appearance, whilst the opposite pattern was found for others (e.g. AU6, 7 and 10). AU-specific feature sets may yield optimal results.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Automatically detecting action units from faces of pain: Comparing shape and appearance features\",\"authors\":\"P. Lucey, J. Cohn, S. Lucey, S. Sridharan, K. Prkachin\",\"doi\":\"10.1109/CVPRW.2009.5204279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent psychological research suggests that facial movements are a reliable measure of pain. Automatic detection of facial movements associated with pain would contribute to patient care but is technically challenging. Facial movements may be subtle and accompanied by abrupt changes in head orientation. Active appearance models (AAM) have proven robust to naturally occurring facial behavior, yet AAM-based efforts to automatically detect action units (AUs) are few. Using image data from patients with rotator-cuff injuries, we describe an AAM-based automatic system that decouples shape and appearance to detect AUs on a frame-by-frame basis. Most current approaches to AU detection use only appearance features. We explored the relative efficacy of shape and appearance for AU detection. Consistent with the experience of human observers, we found specific relationships between action units and types of facial features. Several AU (e.g. AU4, 12, and 43) were more discriminable by shape than by appearance, whilst the opposite pattern was found for others (e.g. AU6, 7 and 10). AU-specific feature sets may yield optimal results.\",\"PeriodicalId\":431981,\"journal\":{\"name\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2009.5204279\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

最近的心理学研究表明,面部运动是衡量疼痛的可靠指标。与疼痛相关的面部运动的自动检测将有助于患者护理,但在技术上具有挑战性。面部运动可能很微妙,并伴有头部方向的突然变化。主动外观模型(AAM)已被证明对自然发生的面部行为具有鲁棒性,但基于AAM的自动检测动作单元(AUs)的努力很少。利用肩袖损伤患者的图像数据,我们描述了一个基于aam的自动系统,该系统将形状和外观解耦,以逐帧检测AUs。目前大多数AU检测方法仅使用外观特征。我们探讨了形状和外观在AU检测中的相对功效。与人类观察者的经验一致,我们发现了动作单位和面部特征类型之间的特定关系。一些AU(如AU4、12和43)的形状比外观更容易区分,而其他AU(如AU6、7和10)的模式则相反。特定于au的特性集可能产生最佳结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatically detecting action units from faces of pain: Comparing shape and appearance features
Recent psychological research suggests that facial movements are a reliable measure of pain. Automatic detection of facial movements associated with pain would contribute to patient care but is technically challenging. Facial movements may be subtle and accompanied by abrupt changes in head orientation. Active appearance models (AAM) have proven robust to naturally occurring facial behavior, yet AAM-based efforts to automatically detect action units (AUs) are few. Using image data from patients with rotator-cuff injuries, we describe an AAM-based automatic system that decouples shape and appearance to detect AUs on a frame-by-frame basis. Most current approaches to AU detection use only appearance features. We explored the relative efficacy of shape and appearance for AU detection. Consistent with the experience of human observers, we found specific relationships between action units and types of facial features. Several AU (e.g. AU4, 12, and 43) were more discriminable by shape than by appearance, whilst the opposite pattern was found for others (e.g. AU6, 7 and 10). AU-specific feature sets may yield optimal results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time 3D modeling of static scenes using solely a Time-of-Flight sensor Image matching in large scale indoor environment Learning to segment using machine-learned penalized logistic models Modeling and exploiting the spatio-temporal facial action dependencies for robust spontaneous facial expression recognition Fuzzy statistical modeling of dynamic backgrounds for moving object detection in infrared videos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1