计算帮助位的信息论内容价值

Salman Beigi, O. Etesami, A. Gohari
{"title":"计算帮助位的信息论内容价值","authors":"Salman Beigi, O. Etesami, A. Gohari","doi":"10.1109/IWCIT.2015.7140205","DOIUrl":null,"url":null,"abstract":"“Help bits” are some limited trusted information about an instance or instances of a computational problem that may reduce the computational complexity of solving that instance or instances. Assume that we can efficiently solve k instances of a decision problem using some help bits whose entropy is less than k when the k instances are drawn independently from a particular distribution. Then there is an upper bound on the average-case complexity of the problem, namely we can efficiently solve an instance drawn from that distribution correctly with probability better than 1/2.","PeriodicalId":166939,"journal":{"name":"2015 Iran Workshop on Communication and Information Theory (IWCIT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The value of information-theoretic content of help bits for computation\",\"authors\":\"Salman Beigi, O. Etesami, A. Gohari\",\"doi\":\"10.1109/IWCIT.2015.7140205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"“Help bits” are some limited trusted information about an instance or instances of a computational problem that may reduce the computational complexity of solving that instance or instances. Assume that we can efficiently solve k instances of a decision problem using some help bits whose entropy is less than k when the k instances are drawn independently from a particular distribution. Then there is an upper bound on the average-case complexity of the problem, namely we can efficiently solve an instance drawn from that distribution correctly with probability better than 1/2.\",\"PeriodicalId\":166939,\"journal\":{\"name\":\"2015 Iran Workshop on Communication and Information Theory (IWCIT)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Iran Workshop on Communication and Information Theory (IWCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCIT.2015.7140205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Iran Workshop on Communication and Information Theory (IWCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCIT.2015.7140205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

“帮助位”是关于计算问题的一个或多个实例的一些有限的可信信息,可以降低解决该实例或多个实例的计算复杂性。假设当k个实例独立于特定分布时,我们可以使用熵小于k的帮助位有效地解决决策问题的k个实例。然后,问题的平均情况复杂性有一个上限,即我们可以有效地解决从该分布中正确抽取的实例,概率大于1/2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The value of information-theoretic content of help bits for computation
“Help bits” are some limited trusted information about an instance or instances of a computational problem that may reduce the computational complexity of solving that instance or instances. Assume that we can efficiently solve k instances of a decision problem using some help bits whose entropy is less than k when the k instances are drawn independently from a particular distribution. Then there is an upper bound on the average-case complexity of the problem, namely we can efficiently solve an instance drawn from that distribution correctly with probability better than 1/2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel approach to mathematical multiple criteria decision making methods based on information theoretic measures An iterative bit flipping based decoding algorithm for LDPC codes Statistical characterization of the output of nonlinear power-cubic detection unit for ultrashort light pulse communication in the presence of Gaussian noise Perfect interference alignment utilizing channel structure One-level LDPC lattice codes for the relay channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1