利用机器学习算法实现货物的智能交付

Eleni Boumpa, Vasileios Tsoukas, Vasileios Chioktour, M. Kalafati, G. Spathoulas, Athanasios Kakarountas
{"title":"利用机器学习算法实现货物的智能交付","authors":"Eleni Boumpa, Vasileios Tsoukas, Vasileios Chioktour, M. Kalafati, G. Spathoulas, Athanasios Kakarountas","doi":"10.1145/3575879.3576009","DOIUrl":null,"url":null,"abstract":"This paper presents the work conducted on providing an efficient solution to the Vehicle Routing Problem considering all stages of a delivery process. The results are promising when compared to real-life data and depict the benefits of the application of ML algorithms in all stages of the process. A platform capable to monitor the various stages of the process was developed, and a number of ML models were incorporated to provide the best solution to a multiobjective problem. The results indicate on average a maximum of 25% distance saving, and a maximum of 14% regarding the total delivery time.","PeriodicalId":164036,"journal":{"name":"Proceedings of the 26th Pan-Hellenic Conference on Informatics","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart Delivery for Goods Exploiting ML Algorithms\",\"authors\":\"Eleni Boumpa, Vasileios Tsoukas, Vasileios Chioktour, M. Kalafati, G. Spathoulas, Athanasios Kakarountas\",\"doi\":\"10.1145/3575879.3576009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the work conducted on providing an efficient solution to the Vehicle Routing Problem considering all stages of a delivery process. The results are promising when compared to real-life data and depict the benefits of the application of ML algorithms in all stages of the process. A platform capable to monitor the various stages of the process was developed, and a number of ML models were incorporated to provide the best solution to a multiobjective problem. The results indicate on average a maximum of 25% distance saving, and a maximum of 14% regarding the total delivery time.\",\"PeriodicalId\":164036,\"journal\":{\"name\":\"Proceedings of the 26th Pan-Hellenic Conference on Informatics\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th Pan-Hellenic Conference on Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3575879.3576009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th Pan-Hellenic Conference on Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3575879.3576009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了在考虑运输过程各个阶段的情况下,为车辆路线问题提供有效解决方案的工作。与现实数据相比,结果是有希望的,并描述了在过程的所有阶段应用ML算法的好处。开发了一个能够监控过程各个阶段的平台,并结合了许多ML模型,以提供多目标问题的最佳解决方案。结果表明,平均最多可节省25%的距离,最多可节省14%的总交付时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smart Delivery for Goods Exploiting ML Algorithms
This paper presents the work conducted on providing an efficient solution to the Vehicle Routing Problem considering all stages of a delivery process. The results are promising when compared to real-life data and depict the benefits of the application of ML algorithms in all stages of the process. A platform capable to monitor the various stages of the process was developed, and a number of ML models were incorporated to provide the best solution to a multiobjective problem. The results indicate on average a maximum of 25% distance saving, and a maximum of 14% regarding the total delivery time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum Machine Learning in Drug Discovery: Current State and Challenges CNN-based Segmentation and Classification of Sound Streams under realistic conditions Exam Wizard e-assessment platform: new features, field test results and instructor’s experience A Neuro-Symbolic Approach for Fault Diagnosis in Smart Power Grids A combination of a Proximity technique and Weighted average for LP Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1