Mochammad Jafar Tri Febriansyah, S. Wahjuni, Indra Jaya
{"title":"基于模糊推理系统的检测系统及滚装船舶通知的设计开发","authors":"Mochammad Jafar Tri Febriansyah, S. Wahjuni, Indra Jaya","doi":"10.23917/khif.v9i1.16759","DOIUrl":null,"url":null,"abstract":"- Ship stability is very important for the safety of ship motion. There are many factors that affect the stability of a ship. One of the causes of accidents on ships is the problem of ship stability, including the ship cannot be controlled, and loses balance due to improper placement of cargo loads. This study combines gyroscopes, accelerometers, compasses, and GPS sensors, so that more accurate ship tilt information is obtained through an Android smartphone application. This study uses the fuzzy inference system (FIS) method with a trapezoidal membership function where there are 2 inputs and 1 output. Ship tilt input uses 3 linguistic variables very tilted, tilted, and stable. The slope duration input uses 5 very fast, fast, fairly fast, slow, and very slow linguistic variables. Ship status output is divided into 3 linguistic variables safe, alert, and dangerous. Testing and implementation with an input slope of 4.8 and a slope duration of 10 seconds using the Sugeno fuzzy method, the ship's crips value of 0.65 with an alert status was obtained. Calculation of the accuracy of the gyroscope sensor error using the MAPE method, the result is an error percentage of 6.55% (very good). The system accuracy error of 39 trials (36 correct and 3 incorrect) is 92.30% (very good). This research is expected to make it easier for the captain to monitor the stability of the ship and can provide notification of the status of the ship to the captain of the ship if there is a condition of the ship that needs to be watched out for. In addition, the notification will also be received by Port officers on land.","PeriodicalId":326094,"journal":{"name":"Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design Development of Detection System and Ro-Ro Ship Notification based on Fuzzy Inference System\",\"authors\":\"Mochammad Jafar Tri Febriansyah, S. Wahjuni, Indra Jaya\",\"doi\":\"10.23917/khif.v9i1.16759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"- Ship stability is very important for the safety of ship motion. There are many factors that affect the stability of a ship. One of the causes of accidents on ships is the problem of ship stability, including the ship cannot be controlled, and loses balance due to improper placement of cargo loads. This study combines gyroscopes, accelerometers, compasses, and GPS sensors, so that more accurate ship tilt information is obtained through an Android smartphone application. This study uses the fuzzy inference system (FIS) method with a trapezoidal membership function where there are 2 inputs and 1 output. Ship tilt input uses 3 linguistic variables very tilted, tilted, and stable. The slope duration input uses 5 very fast, fast, fairly fast, slow, and very slow linguistic variables. Ship status output is divided into 3 linguistic variables safe, alert, and dangerous. Testing and implementation with an input slope of 4.8 and a slope duration of 10 seconds using the Sugeno fuzzy method, the ship's crips value of 0.65 with an alert status was obtained. Calculation of the accuracy of the gyroscope sensor error using the MAPE method, the result is an error percentage of 6.55% (very good). The system accuracy error of 39 trials (36 correct and 3 incorrect) is 92.30% (very good). This research is expected to make it easier for the captain to monitor the stability of the ship and can provide notification of the status of the ship to the captain of the ship if there is a condition of the ship that needs to be watched out for. In addition, the notification will also be received by Port officers on land.\",\"PeriodicalId\":326094,\"journal\":{\"name\":\"Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23917/khif.v9i1.16759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23917/khif.v9i1.16759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design Development of Detection System and Ro-Ro Ship Notification based on Fuzzy Inference System
- Ship stability is very important for the safety of ship motion. There are many factors that affect the stability of a ship. One of the causes of accidents on ships is the problem of ship stability, including the ship cannot be controlled, and loses balance due to improper placement of cargo loads. This study combines gyroscopes, accelerometers, compasses, and GPS sensors, so that more accurate ship tilt information is obtained through an Android smartphone application. This study uses the fuzzy inference system (FIS) method with a trapezoidal membership function where there are 2 inputs and 1 output. Ship tilt input uses 3 linguistic variables very tilted, tilted, and stable. The slope duration input uses 5 very fast, fast, fairly fast, slow, and very slow linguistic variables. Ship status output is divided into 3 linguistic variables safe, alert, and dangerous. Testing and implementation with an input slope of 4.8 and a slope duration of 10 seconds using the Sugeno fuzzy method, the ship's crips value of 0.65 with an alert status was obtained. Calculation of the accuracy of the gyroscope sensor error using the MAPE method, the result is an error percentage of 6.55% (very good). The system accuracy error of 39 trials (36 correct and 3 incorrect) is 92.30% (very good). This research is expected to make it easier for the captain to monitor the stability of the ship and can provide notification of the status of the ship to the captain of the ship if there is a condition of the ship that needs to be watched out for. In addition, the notification will also be received by Port officers on land.