优化问题的改进多目标粒子群算法

Lu Wang, Yongquan Liang, Jie Yang
{"title":"优化问题的改进多目标粒子群算法","authors":"Lu Wang, Yongquan Liang, Jie Yang","doi":"10.1109/PIC.2010.5687409","DOIUrl":null,"url":null,"abstract":"Some Particle Swarm Optimization (PSO) algorithm have been used to solve Multi-Objective Optimization Problems (MOP) and have achieved good results. But finding a good convergence and distribution of solutions near the Pareto-optimal front in little computational time is still a hard work especially for some complex functions. This paper introduces an improved multi-objective PSO algorithm. It is called Strength Pareto Particle Swarm Optimization algorithm(SPPSO) which uses the ranking and sharing strategies of Strength Pareto Evolutionary Algorithm II (SPEA2). The hyper-volume metric (Zitzler 1999) is introduced to evaluate overall performance of the obtained solutions. Simulation results on five difficult test problems show that the proposed algorithm is able to find much better spread of solutions and better convergence near the true Pareto-optimal front compared to CMOPSO.","PeriodicalId":142910,"journal":{"name":"2010 IEEE International Conference on Progress in Informatics and Computing","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improved Multi-Objective PSO algorithm for Optimization Problems\",\"authors\":\"Lu Wang, Yongquan Liang, Jie Yang\",\"doi\":\"10.1109/PIC.2010.5687409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some Particle Swarm Optimization (PSO) algorithm have been used to solve Multi-Objective Optimization Problems (MOP) and have achieved good results. But finding a good convergence and distribution of solutions near the Pareto-optimal front in little computational time is still a hard work especially for some complex functions. This paper introduces an improved multi-objective PSO algorithm. It is called Strength Pareto Particle Swarm Optimization algorithm(SPPSO) which uses the ranking and sharing strategies of Strength Pareto Evolutionary Algorithm II (SPEA2). The hyper-volume metric (Zitzler 1999) is introduced to evaluate overall performance of the obtained solutions. Simulation results on five difficult test problems show that the proposed algorithm is able to find much better spread of solutions and better convergence near the true Pareto-optimal front compared to CMOPSO.\",\"PeriodicalId\":142910,\"journal\":{\"name\":\"2010 IEEE International Conference on Progress in Informatics and Computing\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Progress in Informatics and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIC.2010.5687409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Progress in Informatics and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC.2010.5687409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

一些粒子群优化算法已被用于求解多目标优化问题,并取得了较好的效果。但是,在较短的计算时间内找到帕累托最优前沿附近的解的良好收敛和分布仍然是一项艰巨的工作,特别是对于一些复杂的函数。本文介绍了一种改进的多目标粒子群算法。该算法采用了强度帕累托进化算法ⅱ(SPEA2)的排序和共享策略,称为强度帕累托粒子群优化算法(SPPSO)。引入了超体积度量(Zitzler 1999)来评估所获得解决方案的整体性能。5个困难测试问题的仿真结果表明,与CMOPSO相比,该算法具有更好的解的扩散性和更好的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved Multi-Objective PSO algorithm for Optimization Problems
Some Particle Swarm Optimization (PSO) algorithm have been used to solve Multi-Objective Optimization Problems (MOP) and have achieved good results. But finding a good convergence and distribution of solutions near the Pareto-optimal front in little computational time is still a hard work especially for some complex functions. This paper introduces an improved multi-objective PSO algorithm. It is called Strength Pareto Particle Swarm Optimization algorithm(SPPSO) which uses the ranking and sharing strategies of Strength Pareto Evolutionary Algorithm II (SPEA2). The hyper-volume metric (Zitzler 1999) is introduced to evaluate overall performance of the obtained solutions. Simulation results on five difficult test problems show that the proposed algorithm is able to find much better spread of solutions and better convergence near the true Pareto-optimal front compared to CMOPSO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data compression of multispectral images for FY-2C geostationary meteorological satellite Redundant De Bruijn graph based location and routing for large-scale peer-to-peer system Content semantic filter based on Domain Ontology An isolated word recognition system based on DSP and improved dynamic time warping algorithm Research on Logistics Carbon Footprint Analysis System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1