温室环境短期内温度预测的混合MLP-RBF模型结构

P. Eredics, T. Dobrowiecki
{"title":"温室环境短期内温度预测的混合MLP-RBF模型结构","authors":"P. Eredics, T. Dobrowiecki","doi":"10.1109/CINTI.2013.6705225","DOIUrl":null,"url":null,"abstract":"A wide variety of greenhouse temperature models have been proposed in the literature in the previous years. This paper proposes a hybrid modeling method incorporating a multilayer perceptron neural network and a radial basis function neural network aimed to be more accurate on input regions not covered by training data. The results show that the proposed method has better performance compared to the original physical-neural hybrid model if the input values are not far from the input range of the values used for training.","PeriodicalId":439949,"journal":{"name":"2013 IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Hybrid MLP-RBF model structure for short-term internal temperature prediction in greenhouse environments\",\"authors\":\"P. Eredics, T. Dobrowiecki\",\"doi\":\"10.1109/CINTI.2013.6705225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A wide variety of greenhouse temperature models have been proposed in the literature in the previous years. This paper proposes a hybrid modeling method incorporating a multilayer perceptron neural network and a radial basis function neural network aimed to be more accurate on input regions not covered by training data. The results show that the proposed method has better performance compared to the original physical-neural hybrid model if the input values are not far from the input range of the values used for training.\",\"PeriodicalId\":439949,\"journal\":{\"name\":\"2013 IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CINTI.2013.6705225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINTI.2013.6705225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在前几年的文献中提出了各种各样的温室温度模型。本文提出了一种结合多层感知器神经网络和径向基函数神经网络的混合建模方法,旨在提高训练数据未覆盖的输入区域的准确性。结果表明,当输入值与训练值的输入范围不相差很远时,所提方法比原始的物理-神经混合模型具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybrid MLP-RBF model structure for short-term internal temperature prediction in greenhouse environments
A wide variety of greenhouse temperature models have been proposed in the literature in the previous years. This paper proposes a hybrid modeling method incorporating a multilayer perceptron neural network and a radial basis function neural network aimed to be more accurate on input regions not covered by training data. The results show that the proposed method has better performance compared to the original physical-neural hybrid model if the input values are not far from the input range of the values used for training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An improved centroid-index by Reviewing on centroid-index methods A predictive optimization method for energy-optimal speed profile generation for trains Fuzzy knowledge-based approach to diagnosis tasks in stochastic environment Long-term Electrical load forecasting based on economic and demographic data for Turkey Look-ahead cruise control considering road geometry and traffc flow
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1