基于季节时间序列模型的洛杉矶长滩数据分析

Weiqiang Wang, Zhendong Niu
{"title":"基于季节时间序列模型的洛杉矶长滩数据分析","authors":"Weiqiang Wang, Zhendong Niu","doi":"10.1109/ICDMW.2010.93","DOIUrl":null,"url":null,"abstract":"Air pollution has been a huge problem for a long time, more and more scientists focus on this hot topic, In this paper we presented a series data analysis methods for Los Angeles Long Beach datasets by Seasonal ARIMA(autoregressive integrated moving average) model and MCMC(Markov chain Monte Carlo) method. The MCMC methods are studied with LA long beach air pollution PM 2.5 traffic from 1997 to 2008 observations. The conclusion illustrated that experimental results indicate that the seasonal ARIMA model can be an effective way to forecast air pollution, and also know the MCMC model fitting the datasets very significantly. This approach applied to a large class of utility functions and models for Air pollution and traffic fields.","PeriodicalId":170201,"journal":{"name":"2010 IEEE International Conference on Data Mining Workshops","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Data Analysis in Los Angeles Long Beach with Seasonal Time Series Model\",\"authors\":\"Weiqiang Wang, Zhendong Niu\",\"doi\":\"10.1109/ICDMW.2010.93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Air pollution has been a huge problem for a long time, more and more scientists focus on this hot topic, In this paper we presented a series data analysis methods for Los Angeles Long Beach datasets by Seasonal ARIMA(autoregressive integrated moving average) model and MCMC(Markov chain Monte Carlo) method. The MCMC methods are studied with LA long beach air pollution PM 2.5 traffic from 1997 to 2008 observations. The conclusion illustrated that experimental results indicate that the seasonal ARIMA model can be an effective way to forecast air pollution, and also know the MCMC model fitting the datasets very significantly. This approach applied to a large class of utility functions and models for Air pollution and traffic fields.\",\"PeriodicalId\":170201,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining Workshops\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2010.93\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2010.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

长期以来,空气污染一直是一个巨大的问题,越来越多的科学家关注这一热门话题。本文提出了一种基于季节性ARIMA(自回归综合移动平均)模型和MCMC(马尔可夫链蒙特卡罗)方法的洛杉矶长滩数据分析方法。利用1997 ~ 2008年洛杉矶长滩空气污染PM 2.5交通观测资料对MCMC方法进行了研究。实验结果表明,季节ARIMA模型是一种有效的大气污染预报方法,MCMC模型对数据集的拟合效果也很好。这种方法适用于空气污染和交通领域的大量效用函数和模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data Analysis in Los Angeles Long Beach with Seasonal Time Series Model
Air pollution has been a huge problem for a long time, more and more scientists focus on this hot topic, In this paper we presented a series data analysis methods for Los Angeles Long Beach datasets by Seasonal ARIMA(autoregressive integrated moving average) model and MCMC(Markov chain Monte Carlo) method. The MCMC methods are studied with LA long beach air pollution PM 2.5 traffic from 1997 to 2008 observations. The conclusion illustrated that experimental results indicate that the seasonal ARIMA model can be an effective way to forecast air pollution, and also know the MCMC model fitting the datasets very significantly. This approach applied to a large class of utility functions and models for Air pollution and traffic fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum Path Integral Inspired Query Sequence Suggestion for User Search Task Simplification PTCR-Miner: Progressive Temporal Class Rule Mining for Multivariate Temporal Data Classification Bridging Folksonomies and Domain Ontologies: Getting Out Non-taxonomic Relations SIMPLE: Interactive Analytics on Patent Data Parallel EM-Clustering: Fast Convergence by Asynchronous Model Updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1