使用可变参数方差的统计设计及其在细胞神经网络中的应用

I. Fajfar, F. Bratkovic
{"title":"使用可变参数方差的统计设计及其在细胞神经网络中的应用","authors":"I. Fajfar, F. Bratkovic","doi":"10.1109/CNNA.1994.381693","DOIUrl":null,"url":null,"abstract":"Many cellular neural network design methods result in a set of linear inequalities, which they attempt to solve by various methods. In the paper we first point out the importance of the problem for the CNN design, and then expand the statistical design method proposed by R.K. Brayton, G.D. Hachtel, and S.W. Director (1978), applying it to cellular neural networks. Instead of original assumption of constant variances of the statistical parameter distributions, we take variances to be linearly dependent on parameter nominal values, which leads us to construct an iterative process with very fast convergence. A design example of winner-take-all cellular neural network is given, showing that with our improvement one can reliably implement the network of up to 50 cells as opposed to 10 cell CNN obtained by the original method.<<ETX>>","PeriodicalId":248898,"journal":{"name":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","volume":"54 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Statistical design using variable parameter variances and application to cellular neural networks\",\"authors\":\"I. Fajfar, F. Bratkovic\",\"doi\":\"10.1109/CNNA.1994.381693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many cellular neural network design methods result in a set of linear inequalities, which they attempt to solve by various methods. In the paper we first point out the importance of the problem for the CNN design, and then expand the statistical design method proposed by R.K. Brayton, G.D. Hachtel, and S.W. Director (1978), applying it to cellular neural networks. Instead of original assumption of constant variances of the statistical parameter distributions, we take variances to be linearly dependent on parameter nominal values, which leads us to construct an iterative process with very fast convergence. A design example of winner-take-all cellular neural network is given, showing that with our improvement one can reliably implement the network of up to 50 cells as opposed to 10 cell CNN obtained by the original method.<<ETX>>\",\"PeriodicalId\":248898,\"journal\":{\"name\":\"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)\",\"volume\":\"54 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.1994.381693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1994.381693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

许多细胞神经网络设计方法都会产生一组线性不等式,它们试图通过各种方法来解决这些不等式。本文首先指出了该问题对CNN设计的重要性,然后将R.K. Brayton、G.D. Hachtel和S.W. Director(1978)提出的统计设计方法进行了扩展,并将其应用于细胞神经网络。我们不再假设统计参数分布的方差恒定,而是使方差与参数标称值线性相关,从而构造了一个收敛速度非常快的迭代过程。给出了一个赢家通吃的细胞神经网络的设计示例,表明通过我们的改进可以可靠地实现多达50个细胞的网络,而不是由原始方法获得的10个细胞的CNN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Statistical design using variable parameter variances and application to cellular neural networks
Many cellular neural network design methods result in a set of linear inequalities, which they attempt to solve by various methods. In the paper we first point out the importance of the problem for the CNN design, and then expand the statistical design method proposed by R.K. Brayton, G.D. Hachtel, and S.W. Director (1978), applying it to cellular neural networks. Instead of original assumption of constant variances of the statistical parameter distributions, we take variances to be linearly dependent on parameter nominal values, which leads us to construct an iterative process with very fast convergence. A design example of winner-take-all cellular neural network is given, showing that with our improvement one can reliably implement the network of up to 50 cells as opposed to 10 cell CNN obtained by the original method.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Realisation of a digital cellular neural network for image processing Convergence and stability of the FSR CNN model A versatile CMOS building block for fully analogically-programmable VLSI cellular neural networks A fast, complex and efficient test implementation of the CNN Universal Machine Optoelectronic cellular neural networks based on amorphous silicon thin film technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1