在线手写词识别的最小分类误差训练

A. Biem
{"title":"在线手写词识别的最小分类误差训练","authors":"A. Biem","doi":"10.1109/IWFHR.2002.1030885","DOIUrl":null,"url":null,"abstract":"We describe an application of the minimum classification error (MCE) training criterion to online unconstrained-style word recognition. The described system uses allograph-HMMs to handle writer variability. The result, on vocabularies of 5k to 10k, shows that MCE training achieves around 17% word error rate reduction when compared to the baseline maximum likelihood system.","PeriodicalId":114017,"journal":{"name":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Minimum classification error training for online handwritten word recognition\",\"authors\":\"A. Biem\",\"doi\":\"10.1109/IWFHR.2002.1030885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe an application of the minimum classification error (MCE) training criterion to online unconstrained-style word recognition. The described system uses allograph-HMMs to handle writer variability. The result, on vocabularies of 5k to 10k, shows that MCE training achieves around 17% word error rate reduction when compared to the baseline maximum likelihood system.\",\"PeriodicalId\":114017,\"journal\":{\"name\":\"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWFHR.2002.1030885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWFHR.2002.1030885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文描述了最小分类误差(MCE)训练准则在在线无约束风格词识别中的应用。所描述的系统使用allography - hmm来处理写入器的可变性。结果显示,在5k到10k的词汇表上,与基线最大似然系统相比,MCE训练实现了大约17%的单词错误率降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Minimum classification error training for online handwritten word recognition
We describe an application of the minimum classification error (MCE) training criterion to online unconstrained-style word recognition. The described system uses allograph-HMMs to handle writer variability. The result, on vocabularies of 5k to 10k, shows that MCE training achieves around 17% word error rate reduction when compared to the baseline maximum likelihood system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bigram-based post-processing for online handwriting recognition using correctness evaluation The effect of large training set sizes on online Japanese Kanji and English cursive recognizers Analysis of stability in hand-written dynamic signatures Recognition of courtesy amounts on bank checks based on a segmentation approach Vind(x): using the user through cooperative annotation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1