对称Toeplitz矩阵的压缩和精确恢复的广义嵌套抽样

Heng Qiao, P. Pal
{"title":"对称Toeplitz矩阵的压缩和精确恢复的广义嵌套抽样","authors":"Heng Qiao, P. Pal","doi":"10.1109/GlobalSIP.2014.7032156","DOIUrl":null,"url":null,"abstract":"This paper considers the problem of estimating the symmetric and Toeplitz covariance matrix of compressive samples of wide sense stationary random vectors. A new structured deterministic sampling method known as the \"Generalized Nested Sampling\" is introduced which enables compressive quadratic sampling of symmetric Toeplitz matrices., by fully exploiting the inherent redundancy in the Toeplitz matrix. For a Toeplitz matrix of size N ×N, this sampling scheme can attain a compression factor of O(√N) even without assuming sparsity and/or low rank, and allows exact recovery of the original Toeplitz matrix. When the matrix is sparse, a new hybrid sampling approach is proposed which efficiently combines Generalized Nested Sampling and Random Sampling to attain even greater compression rates, which, under suitable conditions can be as large as O(√N), using a novel observation formulated in this paper.","PeriodicalId":362306,"journal":{"name":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Generalized nested sampling for compression and exact recovery of symmetric Toeplitz matrices\",\"authors\":\"Heng Qiao, P. Pal\",\"doi\":\"10.1109/GlobalSIP.2014.7032156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the problem of estimating the symmetric and Toeplitz covariance matrix of compressive samples of wide sense stationary random vectors. A new structured deterministic sampling method known as the \\\"Generalized Nested Sampling\\\" is introduced which enables compressive quadratic sampling of symmetric Toeplitz matrices., by fully exploiting the inherent redundancy in the Toeplitz matrix. For a Toeplitz matrix of size N ×N, this sampling scheme can attain a compression factor of O(√N) even without assuming sparsity and/or low rank, and allows exact recovery of the original Toeplitz matrix. When the matrix is sparse, a new hybrid sampling approach is proposed which efficiently combines Generalized Nested Sampling and Random Sampling to attain even greater compression rates, which, under suitable conditions can be as large as O(√N), using a novel observation formulated in this paper.\",\"PeriodicalId\":362306,\"journal\":{\"name\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2014.7032156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2014.7032156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

研究广义平稳随机向量压缩样本的对称协方差矩阵和Toeplitz协方差矩阵的估计问题。提出了一种新的结构化确定性抽样方法——“广义嵌套抽样”,实现了对称Toeplitz矩阵的压缩二次抽样。,充分利用Toeplitz矩阵的固有冗余。对于大小为N ×N的Toeplitz矩阵,即使不假设稀疏性和/或低秩,该采样方案也可以获得O(√N)的压缩因子,并允许原始Toeplitz矩阵的精确恢复。当矩阵稀疏时,提出了一种新的混合采样方法,该方法有效地结合了广义嵌套采样和随机采样,以获得更高的压缩率,在适当的条件下压缩率可达O(√N)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generalized nested sampling for compression and exact recovery of symmetric Toeplitz matrices
This paper considers the problem of estimating the symmetric and Toeplitz covariance matrix of compressive samples of wide sense stationary random vectors. A new structured deterministic sampling method known as the "Generalized Nested Sampling" is introduced which enables compressive quadratic sampling of symmetric Toeplitz matrices., by fully exploiting the inherent redundancy in the Toeplitz matrix. For a Toeplitz matrix of size N ×N, this sampling scheme can attain a compression factor of O(√N) even without assuming sparsity and/or low rank, and allows exact recovery of the original Toeplitz matrix. When the matrix is sparse, a new hybrid sampling approach is proposed which efficiently combines Generalized Nested Sampling and Random Sampling to attain even greater compression rates, which, under suitable conditions can be as large as O(√N), using a novel observation formulated in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Competitive design of power allocation strategies for energy harvesting wireless communication systems Correction of over-exposure using color channel correlations Communications meets copula modeling: Non-standard dependence features in wireless fading channels Energy efficient and low complex wireless communication Feasibility of positive secrecy rate in wiretap interference channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1