利用深度传感器进行水下重建

Alexandru Dancu, M. Fourgeaud, Zlatko Franjcic, R. Avetisyan
{"title":"利用深度传感器进行水下重建","authors":"Alexandru Dancu, M. Fourgeaud, Zlatko Franjcic, R. Avetisyan","doi":"10.1145/2669024.2669042","DOIUrl":null,"url":null,"abstract":"In this paper we describe experiments in which we acquire range images of underwater surfaces with four types of depth sensors and attempt to reconstruct underwater surfaces. Two conditions are tested: acquiring range images by submersing the sensors and by holding the sensors over the water line and recording through water. We found out that only the Kinect sensor is able to acquire depth images of submersed surfaces by holding the sensor above water. We compare the reconstructed underwater geometry with meshes obtained when the surfaces were not submersed. These findings show that 3D underwater reconstruction using depth sensors is possible, despite the high water absorption of the near infrared spectrum in which these sensors operate.","PeriodicalId":353683,"journal":{"name":"SIGGRAPH Asia 2014 Technical Briefs","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Underwater reconstruction using depth sensors\",\"authors\":\"Alexandru Dancu, M. Fourgeaud, Zlatko Franjcic, R. Avetisyan\",\"doi\":\"10.1145/2669024.2669042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe experiments in which we acquire range images of underwater surfaces with four types of depth sensors and attempt to reconstruct underwater surfaces. Two conditions are tested: acquiring range images by submersing the sensors and by holding the sensors over the water line and recording through water. We found out that only the Kinect sensor is able to acquire depth images of submersed surfaces by holding the sensor above water. We compare the reconstructed underwater geometry with meshes obtained when the surfaces were not submersed. These findings show that 3D underwater reconstruction using depth sensors is possible, despite the high water absorption of the near infrared spectrum in which these sensors operate.\",\"PeriodicalId\":353683,\"journal\":{\"name\":\"SIGGRAPH Asia 2014 Technical Briefs\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Asia 2014 Technical Briefs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2669024.2669042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2014 Technical Briefs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2669024.2669042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

在本文中,我们描述了用四种类型的深度传感器获取水下表面距离图像并尝试重建水下表面的实验。测试了两种条件:将传感器浸入水中获取距离图像,以及将传感器置于水线上并通过水进行记录。我们发现,只有Kinect传感器能够通过将传感器放在水面上来获取淹没水面的深度图像。我们将重建的水下几何与表面未被淹没时得到的网格进行了比较。这些发现表明,使用深度传感器进行三维水下重建是可能的,尽管这些传感器在近红外光谱中具有很高的吸水性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Underwater reconstruction using depth sensors
In this paper we describe experiments in which we acquire range images of underwater surfaces with four types of depth sensors and attempt to reconstruct underwater surfaces. Two conditions are tested: acquiring range images by submersing the sensors and by holding the sensors over the water line and recording through water. We found out that only the Kinect sensor is able to acquire depth images of submersed surfaces by holding the sensor above water. We compare the reconstructed underwater geometry with meshes obtained when the surfaces were not submersed. These findings show that 3D underwater reconstruction using depth sensors is possible, despite the high water absorption of the near infrared spectrum in which these sensors operate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Depth of field rendering via adaptive recursive filtering Splashing liquids with ambient gas pressure Density aware shape modeling to control mass properties of 3D printed objects Feature-oriented writing process reproduction of Chinese calligraphic artwork ColorFingers: improved multi-touch color picker
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1