Mayland Trifena, Khoirunnisa Hamidah, Yuyun Umaidah, A. Voutama
{"title":"四月算法执行,以确定XYZ超市销售的包裹","authors":"Mayland Trifena, Khoirunnisa Hamidah, Yuyun Umaidah, A. Voutama","doi":"10.33050/sensi.v9i2.2912","DOIUrl":null,"url":null,"abstract":"Penjualan paket bundel menjadi strategi pemasaran yang populer di toko swalayan XYZ untuk meningkatkan penjualan dan kepuasan pelanggan. Namun, menentukan kombinasi optimal dari produk-produk yang akan disertakan dalam paket bundel dapat menjadi tugas yang rumit. Oleh karena itu, penelitian ini mengusulkan implementasi algoritma Apriori untuk membantu toko swalayan XYZ dalam menentukan paket bundel yang paling efektif berdasarkan data penjualan. Metode Apriori digunakan untuk mengekstraksi aturan asosiasi dari data penjualan historis. Data penjualan termasuk informasi tentang produk-produk yang dibeli oleh pelanggan secara bersamaan. Algoritma Apriori akan mengidentifikasi kombinasi produk yang sering dibeli bersamaan, sehingga dapat digunakan untuk menentukan paket bundel yang menarik bagi pelanggan. Hasil dari penelitian ini menunjukkan bahwa mayoritas pelanggan yang membeli makanan juga membeli Air Mineral, dengan confident tertinggi sebesar 51,7% dan lift sebesar 2,2. Informasi ini dapat digunakan oleh Swalayan XYZ untuk membuat paket bundel yang menggabungkan makanan dan Air Mineral. Dengan menyusun paket bundel ini, Swalayan XYZ dapat memanfaatkan pola pembelian pelanggan yang teridentifikasi melalui analisis asosiasi untuk meningkatkan penjualan dan memberikan nilai tambah kepada pelanggan.","PeriodicalId":134510,"journal":{"name":"Journal Sensi","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementasi Algoritma Apriori untuk Menentukan Paket Bundel dalam Penjualan Toko Swalayan XYZ\",\"authors\":\"Mayland Trifena, Khoirunnisa Hamidah, Yuyun Umaidah, A. Voutama\",\"doi\":\"10.33050/sensi.v9i2.2912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Penjualan paket bundel menjadi strategi pemasaran yang populer di toko swalayan XYZ untuk meningkatkan penjualan dan kepuasan pelanggan. Namun, menentukan kombinasi optimal dari produk-produk yang akan disertakan dalam paket bundel dapat menjadi tugas yang rumit. Oleh karena itu, penelitian ini mengusulkan implementasi algoritma Apriori untuk membantu toko swalayan XYZ dalam menentukan paket bundel yang paling efektif berdasarkan data penjualan. Metode Apriori digunakan untuk mengekstraksi aturan asosiasi dari data penjualan historis. Data penjualan termasuk informasi tentang produk-produk yang dibeli oleh pelanggan secara bersamaan. Algoritma Apriori akan mengidentifikasi kombinasi produk yang sering dibeli bersamaan, sehingga dapat digunakan untuk menentukan paket bundel yang menarik bagi pelanggan. Hasil dari penelitian ini menunjukkan bahwa mayoritas pelanggan yang membeli makanan juga membeli Air Mineral, dengan confident tertinggi sebesar 51,7% dan lift sebesar 2,2. Informasi ini dapat digunakan oleh Swalayan XYZ untuk membuat paket bundel yang menggabungkan makanan dan Air Mineral. Dengan menyusun paket bundel ini, Swalayan XYZ dapat memanfaatkan pola pembelian pelanggan yang teridentifikasi melalui analisis asosiasi untuk meningkatkan penjualan dan memberikan nilai tambah kepada pelanggan.\",\"PeriodicalId\":134510,\"journal\":{\"name\":\"Journal Sensi\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal Sensi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33050/sensi.v9i2.2912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal Sensi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33050/sensi.v9i2.2912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementasi Algoritma Apriori untuk Menentukan Paket Bundel dalam Penjualan Toko Swalayan XYZ
Penjualan paket bundel menjadi strategi pemasaran yang populer di toko swalayan XYZ untuk meningkatkan penjualan dan kepuasan pelanggan. Namun, menentukan kombinasi optimal dari produk-produk yang akan disertakan dalam paket bundel dapat menjadi tugas yang rumit. Oleh karena itu, penelitian ini mengusulkan implementasi algoritma Apriori untuk membantu toko swalayan XYZ dalam menentukan paket bundel yang paling efektif berdasarkan data penjualan. Metode Apriori digunakan untuk mengekstraksi aturan asosiasi dari data penjualan historis. Data penjualan termasuk informasi tentang produk-produk yang dibeli oleh pelanggan secara bersamaan. Algoritma Apriori akan mengidentifikasi kombinasi produk yang sering dibeli bersamaan, sehingga dapat digunakan untuk menentukan paket bundel yang menarik bagi pelanggan. Hasil dari penelitian ini menunjukkan bahwa mayoritas pelanggan yang membeli makanan juga membeli Air Mineral, dengan confident tertinggi sebesar 51,7% dan lift sebesar 2,2. Informasi ini dapat digunakan oleh Swalayan XYZ untuk membuat paket bundel yang menggabungkan makanan dan Air Mineral. Dengan menyusun paket bundel ini, Swalayan XYZ dapat memanfaatkan pola pembelian pelanggan yang teridentifikasi melalui analisis asosiasi untuk meningkatkan penjualan dan memberikan nilai tambah kepada pelanggan.