最小生成树的时间和消息最优分布式算法

Gopal Pandurangan, Peter Robinson, Michele Scquizzato
{"title":"最小生成树的时间和消息最优分布式算法","authors":"Gopal Pandurangan, Peter Robinson, Michele Scquizzato","doi":"10.1145/3365005","DOIUrl":null,"url":null,"abstract":"This article presents a randomized (Las Vegas) distributed algorithm that constructs a minimum spanning tree (MST) in weighted networks with optimal (up to polylogarithmic factors) time and message complexity. This algorithm runs in Õ(D + √ n) time and exchanges Õ(m) messages (both with high probability), where n is the number of nodes of the network, D is the hop-diameter, and m is the number of edges. This is the first distributed MST algorithm that matches simultaneously the time lower bound of Ω˜(D + √ n) [10] and the message lower bound of Ω (m) [31], which both apply to randomized Monte Carlo algorithms. The prior time and message lower bounds are derived using two completely different graph constructions; the existing lower-bound construction that shows one lower bound does not work for the other. To complement our algorithm, we present a new lower-bound graph construction for which any distributed MST algorithm requires both Ω˜(D + √ n) rounds and Ω (m) messages.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Time- and Message-Optimal Distributed Algorithm for Minimum Spanning Trees\",\"authors\":\"Gopal Pandurangan, Peter Robinson, Michele Scquizzato\",\"doi\":\"10.1145/3365005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a randomized (Las Vegas) distributed algorithm that constructs a minimum spanning tree (MST) in weighted networks with optimal (up to polylogarithmic factors) time and message complexity. This algorithm runs in Õ(D + √ n) time and exchanges Õ(m) messages (both with high probability), where n is the number of nodes of the network, D is the hop-diameter, and m is the number of edges. This is the first distributed MST algorithm that matches simultaneously the time lower bound of Ω˜(D + √ n) [10] and the message lower bound of Ω (m) [31], which both apply to randomized Monte Carlo algorithms. The prior time and message lower bounds are derived using two completely different graph constructions; the existing lower-bound construction that shows one lower bound does not work for the other. To complement our algorithm, we present a new lower-bound graph construction for which any distributed MST algorithm requires both Ω˜(D + √ n) rounds and Ω (m) messages.\",\"PeriodicalId\":154047,\"journal\":{\"name\":\"ACM Transactions on Algorithms (TALG)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Algorithms (TALG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3365005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3365005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种随机(Las Vegas)分布式算法,该算法在具有最佳(最多为多对数因子)时间和消息复杂度的加权网络中构造最小生成树(MST)。该算法运行时间为Õ(D +√n),交换消息为Õ(m)条(均为高概率),其中n为网络节点数,D为跳数,m为边数。这是第一个同时匹配Ω ~ (D +√n)[10]的时间下界和Ω (m)[31]的消息下界的分布式MST算法,它们都适用于随机蒙特卡罗算法。使用两种完全不同的图结构推导了先验时间和消息下界;显示一个下界的现有下界结构不适用于另一个下界。为了补充我们的算法,我们提出了一个新的下界图构造,其中任何分布式MST算法都需要Ω ~ (D +√n)轮和Ω (m)消息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Time- and Message-Optimal Distributed Algorithm for Minimum Spanning Trees
This article presents a randomized (Las Vegas) distributed algorithm that constructs a minimum spanning tree (MST) in weighted networks with optimal (up to polylogarithmic factors) time and message complexity. This algorithm runs in Õ(D + √ n) time and exchanges Õ(m) messages (both with high probability), where n is the number of nodes of the network, D is the hop-diameter, and m is the number of edges. This is the first distributed MST algorithm that matches simultaneously the time lower bound of Ω˜(D + √ n) [10] and the message lower bound of Ω (m) [31], which both apply to randomized Monte Carlo algorithms. The prior time and message lower bounds are derived using two completely different graph constructions; the existing lower-bound construction that shows one lower bound does not work for the other. To complement our algorithm, we present a new lower-bound graph construction for which any distributed MST algorithm requires both Ω˜(D + √ n) rounds and Ω (m) messages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generic Techniques for Building Top-k Structures Deterministic Leader Election in Anonymous Radio Networks A Learned Approach to Design Compressed Rank/Select Data Structures k-apices of Minor-closed Graph Classes. II. Parameterized Algorithms Fully Dynamic (Δ +1)-Coloring in O(1) Update Time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1