基于神经网络和主动子空间方法的聚类振动声学问题参数代理建模

H. Sreekumar, L. Outzen, U. Römer, S. Langer
{"title":"基于神经网络和主动子空间方法的聚类振动声学问题参数代理建模","authors":"H. Sreekumar, L. Outzen, U. Römer, S. Langer","doi":"10.23967/admos.2023.009","DOIUrl":null,"url":null,"abstract":"This contribution presents a combined framework to perform parametric surrogate modeling of vibroacoustic problems that enables efficient training of large-scale problems. The proposed framework combines the active subspace method to perform dimensionality reduction of high-dimensional problems and thereafter a clustering-based approach within the identified active subspace region to yield smaller training clusters. Finally, a trained neural network assists the cluster classification task for any desired parameter point so as to query the parametric system response during the online phase.","PeriodicalId":414984,"journal":{"name":"XI International Conference on Adaptive Modeling and Simulation","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustering-based Parametric Surrogate Modeling of Vibroacoustic Problems Assisted by Neural Networks and Active Subspace Method\",\"authors\":\"H. Sreekumar, L. Outzen, U. Römer, S. Langer\",\"doi\":\"10.23967/admos.2023.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This contribution presents a combined framework to perform parametric surrogate modeling of vibroacoustic problems that enables efficient training of large-scale problems. The proposed framework combines the active subspace method to perform dimensionality reduction of high-dimensional problems and thereafter a clustering-based approach within the identified active subspace region to yield smaller training clusters. Finally, a trained neural network assists the cluster classification task for any desired parameter point so as to query the parametric system response during the online phase.\",\"PeriodicalId\":414984,\"journal\":{\"name\":\"XI International Conference on Adaptive Modeling and Simulation\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"XI International Conference on Adaptive Modeling and Simulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23967/admos.2023.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"XI International Conference on Adaptive Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23967/admos.2023.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这一贡献提出了一个组合框架来执行振动声学问题的参数替代建模,从而能够有效地训练大规模问题。该框架结合了主动子空间方法对高维问题进行降维,然后在确定的主动子空间区域内采用基于聚类的方法产生更小的训练聚类。最后,训练后的神经网络辅助对任意需要的参数点进行聚类分类任务,从而查询在线阶段的参数系统响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clustering-based Parametric Surrogate Modeling of Vibroacoustic Problems Assisted by Neural Networks and Active Subspace Method
This contribution presents a combined framework to perform parametric surrogate modeling of vibroacoustic problems that enables efficient training of large-scale problems. The proposed framework combines the active subspace method to perform dimensionality reduction of high-dimensional problems and thereafter a clustering-based approach within the identified active subspace region to yield smaller training clusters. Finally, a trained neural network assists the cluster classification task for any desired parameter point so as to query the parametric system response during the online phase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Error Estimation for the Material Point and Particle in Cell Methods Dimension Reduction of Dynamic Superresolution and Application to Cell Tracking in PET Dimensionality reduction and physics-based manifold learning for parametric models in biomechanics and tissue engineering Modelling and Simulating Cities with Digital Twins The use of IoT technologies for advanced risk management in tailings dams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1