{"title":"多目标滤波器设计问题计算智能算法的统计分析","authors":"Flávio C. A. Teixeira, A. Romariz","doi":"10.4018/978-1-60566-798-0.ch009","DOIUrl":null,"url":null,"abstract":"This chapter presents the application of a comprehensive statistical analysis for both algorithmic performance comparison and optimal parameter estimation on a multi-objective digital signal processing problem. The problem of designing optimum digital finite impulse response (FIR) filters with the simultaneous approximation of the filter magnitude and phase is posed as a multiobjective optimization problem. Several computational-intelligence-based algorithms for solving this particular optimization problem are presented: genetic algorithms (GA), particle swarm optimization (PSO) and simulated annealing (SA) with multi-objective scalarization methods. Algorithms with Pareto sampling methods, namely non-dominated sorting genetic algorithm II (NSGA-II) and multi-objective simulated annealing (MOSA) are also applied as a way of dealing with multi-objective optimization. Instead of using a process of trial and error, a statistical exploratory analysis is used to estimate optimal parameters. A comprehensive statistical comparison of the applied algorithms is addressed, which indicates a particularly strong performance of NSGA-II and pure GA with weighting scalarization.","PeriodicalId":325405,"journal":{"name":"Intelligent Systems for Automated Learning and Adaptation","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Statistical Analysis of Computational Intelligence Algorithms on a Multi-Objective Filter Design Problem\",\"authors\":\"Flávio C. A. Teixeira, A. Romariz\",\"doi\":\"10.4018/978-1-60566-798-0.ch009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter presents the application of a comprehensive statistical analysis for both algorithmic performance comparison and optimal parameter estimation on a multi-objective digital signal processing problem. The problem of designing optimum digital finite impulse response (FIR) filters with the simultaneous approximation of the filter magnitude and phase is posed as a multiobjective optimization problem. Several computational-intelligence-based algorithms for solving this particular optimization problem are presented: genetic algorithms (GA), particle swarm optimization (PSO) and simulated annealing (SA) with multi-objective scalarization methods. Algorithms with Pareto sampling methods, namely non-dominated sorting genetic algorithm II (NSGA-II) and multi-objective simulated annealing (MOSA) are also applied as a way of dealing with multi-objective optimization. Instead of using a process of trial and error, a statistical exploratory analysis is used to estimate optimal parameters. A comprehensive statistical comparison of the applied algorithms is addressed, which indicates a particularly strong performance of NSGA-II and pure GA with weighting scalarization.\",\"PeriodicalId\":325405,\"journal\":{\"name\":\"Intelligent Systems for Automated Learning and Adaptation\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems for Automated Learning and Adaptation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-60566-798-0.ch009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems for Automated Learning and Adaptation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-60566-798-0.ch009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Statistical Analysis of Computational Intelligence Algorithms on a Multi-Objective Filter Design Problem
This chapter presents the application of a comprehensive statistical analysis for both algorithmic performance comparison and optimal parameter estimation on a multi-objective digital signal processing problem. The problem of designing optimum digital finite impulse response (FIR) filters with the simultaneous approximation of the filter magnitude and phase is posed as a multiobjective optimization problem. Several computational-intelligence-based algorithms for solving this particular optimization problem are presented: genetic algorithms (GA), particle swarm optimization (PSO) and simulated annealing (SA) with multi-objective scalarization methods. Algorithms with Pareto sampling methods, namely non-dominated sorting genetic algorithm II (NSGA-II) and multi-objective simulated annealing (MOSA) are also applied as a way of dealing with multi-objective optimization. Instead of using a process of trial and error, a statistical exploratory analysis is used to estimate optimal parameters. A comprehensive statistical comparison of the applied algorithms is addressed, which indicates a particularly strong performance of NSGA-II and pure GA with weighting scalarization.