结构情景分析与svar

Juan Antolín-Díaz, Ivan Petrella, J. Rubio-Ramirez
{"title":"结构情景分析与svar","authors":"Juan Antolín-Díaz, Ivan Petrella, J. Rubio-Ramirez","doi":"10.2139/ssrn.3669856","DOIUrl":null,"url":null,"abstract":"Abstract Macroeconomists constructing conditional forecasts often face a choice between taking a stand on the details of a fully-specified structural model or relying on correlations from VARs and remaining silent about underlying causal mechanisms. This paper develops tools for constructing economically meaningful scenarios with structural VARs, and proposes a metric to assess and compare their plausibility. We provide a unified treatment of conditional forecasting and structural scenario analysis, relating them to entropic tilting. A careful treatment of uncertainty makes our methods suitable for density forecasting and risk assessment. Two applications illustrate our methods: assessing interest-rate forward guidance and stress-testing bank profitability.","PeriodicalId":308524,"journal":{"name":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Structural Scenario Analysis with SVARs\",\"authors\":\"Juan Antolín-Díaz, Ivan Petrella, J. Rubio-Ramirez\",\"doi\":\"10.2139/ssrn.3669856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Macroeconomists constructing conditional forecasts often face a choice between taking a stand on the details of a fully-specified structural model or relying on correlations from VARs and remaining silent about underlying causal mechanisms. This paper develops tools for constructing economically meaningful scenarios with structural VARs, and proposes a metric to assess and compare their plausibility. We provide a unified treatment of conditional forecasting and structural scenario analysis, relating them to entropic tilting. A careful treatment of uncertainty makes our methods suitable for density forecasting and risk assessment. Two applications illustrate our methods: assessing interest-rate forward guidance and stress-testing bank profitability.\",\"PeriodicalId\":308524,\"journal\":{\"name\":\"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3669856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Applied Econometric Modeling in Forecasting (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3669856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

摘要

构建条件预测的宏观经济学家经常面临这样的选择:是对完全指定的结构模型的细节采取立场,还是依赖var的相关性,对潜在的因果机制保持沉默。本文开发了构建具有结构性var的经济意义情景的工具,并提出了评估和比较其合理性的度量。我们提供了条件预测和结构情景分析的统一处理,将它们与熵倾斜联系起来。对不确定性的仔细处理使我们的方法适合于密度预测和风险评估。两个应用说明了我们的方法:评估利率前瞻指引和压力测试银行盈利能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural Scenario Analysis with SVARs
Abstract Macroeconomists constructing conditional forecasts often face a choice between taking a stand on the details of a fully-specified structural model or relying on correlations from VARs and remaining silent about underlying causal mechanisms. This paper develops tools for constructing economically meaningful scenarios with structural VARs, and proposes a metric to assess and compare their plausibility. We provide a unified treatment of conditional forecasting and structural scenario analysis, relating them to entropic tilting. A careful treatment of uncertainty makes our methods suitable for density forecasting and risk assessment. Two applications illustrate our methods: assessing interest-rate forward guidance and stress-testing bank profitability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Embrace the Differences: Revisiting the Pollyvote Method of Combining Forecasts for U.S. Presidential Elections (2004 to 2020) A Century of Economic Policy Uncertainty Through the French-Canadian Lens Informational Efficiency and Behaviour Within In-Play Prediction Markets A New Class of Robust Observation-Driven Models Modelling and Forecasting of the Nigerian Stock Exchange.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1