从公共图像数据集中提取的视觉特征汇编

M. Cazzolato, L. C. Scabora, Guilherme F. Zabot, M. A. Gutierrez, Caetano Traina Jr., A. Traina
{"title":"从公共图像数据集中提取的视觉特征汇编","authors":"M. Cazzolato, L. C. Scabora, Guilherme F. Zabot, M. A. Gutierrez, Caetano Traina Jr., A. Traina","doi":"10.5753/dsw.2021.17417","DOIUrl":null,"url":null,"abstract":"In this paper, we present FeatSet, a compilation of visual features extracted from open image datasets reported in the literature. FeatSet has a collection of 11 visual features, consisting of color, texture, and shape representations of the images acquired from 13 datasets. We organized the available features in a standard collection, including the available metadata and labels, when available. We also provide a description of the domain of each dataset included in our collection, with visual analysis using Multidimensional Scaling (MDS) and Principal Components Analysis (PCA) methods. FeatSet is recommended for supervised and non-supervised learning, also widely supporting Content-Based Image Retrieval (CBIR) applications and complex data indexing using Metric Access Methods (MAMs).","PeriodicalId":314975,"journal":{"name":"Anais do III Dataset Showcase Workshop (DSW 2021)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"FeatSet: A Compilation of Visual Features Extracted from Public Image Datasets\",\"authors\":\"M. Cazzolato, L. C. Scabora, Guilherme F. Zabot, M. A. Gutierrez, Caetano Traina Jr., A. Traina\",\"doi\":\"10.5753/dsw.2021.17417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present FeatSet, a compilation of visual features extracted from open image datasets reported in the literature. FeatSet has a collection of 11 visual features, consisting of color, texture, and shape representations of the images acquired from 13 datasets. We organized the available features in a standard collection, including the available metadata and labels, when available. We also provide a description of the domain of each dataset included in our collection, with visual analysis using Multidimensional Scaling (MDS) and Principal Components Analysis (PCA) methods. FeatSet is recommended for supervised and non-supervised learning, also widely supporting Content-Based Image Retrieval (CBIR) applications and complex data indexing using Metric Access Methods (MAMs).\",\"PeriodicalId\":314975,\"journal\":{\"name\":\"Anais do III Dataset Showcase Workshop (DSW 2021)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do III Dataset Showcase Workshop (DSW 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/dsw.2021.17417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do III Dataset Showcase Workshop (DSW 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/dsw.2021.17417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们介绍了一个从文献中报道的开放图像数据集中提取的视觉特征汇编。FeatSet集合了11个视觉特征,包括从13个数据集获得的图像的颜色、纹理和形状表示。我们将可用的特性组织在一个标准集合中,包括可用的元数据和标签。我们还提供了我们收集的每个数据集的域描述,并使用多维尺度(MDS)和主成分分析(PCA)方法进行可视化分析。推荐用于监督和非监督学习,也广泛支持基于内容的图像检索(CBIR)应用程序和使用度量访问方法(MAMs)的复杂数据索引。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FeatSet: A Compilation of Visual Features Extracted from Public Image Datasets
In this paper, we present FeatSet, a compilation of visual features extracted from open image datasets reported in the literature. FeatSet has a collection of 11 visual features, consisting of color, texture, and shape representations of the images acquired from 13 datasets. We organized the available features in a standard collection, including the available metadata and labels, when available. We also provide a description of the domain of each dataset included in our collection, with visual analysis using Multidimensional Scaling (MDS) and Principal Components Analysis (PCA) methods. FeatSet is recommended for supervised and non-supervised learning, also widely supporting Content-Based Image Retrieval (CBIR) applications and complex data indexing using Metric Access Methods (MAMs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SAT-ESPEC: Análise e Coleta de Dados da Transmissão de Estações Terrenas de uma Rede Satélite Datasets Curados e Enriquecidos com Proveniência da Campanha Nacional de Vacinação Contra COVID-19 Três Datasets criados a partir de um banco de Canções Populares Brasileiras de Sucesso e Não-Sucesso de 2014 a 2019 BovDB: A data set of stock quotes for Machine Learning on all companies from B3 between 1995 and 2020 Central de Fatos: Um Repositório de Checagens de Fatos
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1