BBD:一种新的IASI-NG高光谱图像贝叶斯双聚类去噪算法

M. Colom, G. Blanchet, A. Klonecki, O. Lezeaux, E. Pequignot, F. Poustomis, C. Thiebaut, S. Ythier, J. Morel
{"title":"BBD:一种新的IASI-NG高光谱图像贝叶斯双聚类去噪算法","authors":"M. Colom, G. Blanchet, A. Klonecki, O. Lezeaux, E. Pequignot, F. Poustomis, C. Thiebaut, S. Ythier, J. Morel","doi":"10.1109/WHISPERS.2016.8071745","DOIUrl":null,"url":null,"abstract":"We propose a new denoising method for 3D hyperspectral images for the future MetOp-Second Generation series satellite incorporating the new IASI-NG interferometer, to be launched in 2021. This adaptive method retrieves the data model directly from the input noisy granule, using the following techniques: dual clustering (spectral and spatial), dimensionality reduction by adaptive PCA, and Bayesian denoising. The use of dimensionality reduction by PCA has been already proven an effective denoising technique because of intrinsic data redundancy. We demonstrate here that by combining a local PCA dimensionality reduction with a dual clustering and a Bayesian denoising, it is possible to improve significantly the PSNR with respect to PCA reduction alone. This noise reduction hints at the possibility to multiply of the resolution of the satellite by factor 4, while keeping an acceptable SNR.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"228 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"BBD: A new Bayesian bi-clustering denoising algorithm for IASI-NG hyperspectral images\",\"authors\":\"M. Colom, G. Blanchet, A. Klonecki, O. Lezeaux, E. Pequignot, F. Poustomis, C. Thiebaut, S. Ythier, J. Morel\",\"doi\":\"10.1109/WHISPERS.2016.8071745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new denoising method for 3D hyperspectral images for the future MetOp-Second Generation series satellite incorporating the new IASI-NG interferometer, to be launched in 2021. This adaptive method retrieves the data model directly from the input noisy granule, using the following techniques: dual clustering (spectral and spatial), dimensionality reduction by adaptive PCA, and Bayesian denoising. The use of dimensionality reduction by PCA has been already proven an effective denoising technique because of intrinsic data redundancy. We demonstrate here that by combining a local PCA dimensionality reduction with a dual clustering and a Bayesian denoising, it is possible to improve significantly the PSNR with respect to PCA reduction alone. This noise reduction hints at the possibility to multiply of the resolution of the satellite by factor 4, while keeping an acceptable SNR.\",\"PeriodicalId\":369281,\"journal\":{\"name\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"volume\":\"228 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2016.8071745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种新的3D高光谱图像去噪方法,用于将于2021年发射的metop -第二代系列卫星,该卫星将采用新的IASI-NG干涉仪。这种自适应方法直接从输入的噪声颗粒中检索数据模型,使用以下技术:双聚类(光谱和空间)、自适应PCA降维和贝叶斯去噪。由于数据本身具有冗余性,PCA降维方法已被证明是一种有效的去噪方法。我们在这里证明,通过将局部PCA降维与双聚类和贝叶斯去噪相结合,可以显著提高单独PCA降维的PSNR。这种降噪暗示了将卫星分辨率乘以4倍的可能性,同时保持可接受的信噪比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BBD: A new Bayesian bi-clustering denoising algorithm for IASI-NG hyperspectral images
We propose a new denoising method for 3D hyperspectral images for the future MetOp-Second Generation series satellite incorporating the new IASI-NG interferometer, to be launched in 2021. This adaptive method retrieves the data model directly from the input noisy granule, using the following techniques: dual clustering (spectral and spatial), dimensionality reduction by adaptive PCA, and Bayesian denoising. The use of dimensionality reduction by PCA has been already proven an effective denoising technique because of intrinsic data redundancy. We demonstrate here that by combining a local PCA dimensionality reduction with a dual clustering and a Bayesian denoising, it is possible to improve significantly the PSNR with respect to PCA reduction alone. This noise reduction hints at the possibility to multiply of the resolution of the satellite by factor 4, while keeping an acceptable SNR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hyperspectral and color-infrared imaging from ultralight aircraft: Potential to recognize tree species in urban environments Mapping land covers of brussels capital region using spatially enhanced hyperspectral images Morpho-spectral objects classification by hyperspectral airborne imagery Land-cover monitoring using time-series hyperspectral data via fractional-order darwinian particle swarm optimization segmentation Nonnegative CP decomposition of multiangle hyperspectral data: A case study on CRISM observations of Martian ICY surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1