唇读使用外部viseme解码

J. Peymanfard, M. R. Mohammadi, Hossein Zeinali, N. Mozayani
{"title":"唇读使用外部viseme解码","authors":"J. Peymanfard, M. R. Mohammadi, Hossein Zeinali, N. Mozayani","doi":"10.1109/MVIP53647.2022.9738749","DOIUrl":null,"url":null,"abstract":"Lip-reading is the operation of recognizing speech from lip movements. This is a difficult task because the movements of the lips when pronouncing the words are similar for some of them. Viseme is used to describe lip movements during a conversation. This paper aims to show how to use external text data (for viseme-to-character mapping) by dividing video-to-character into two stages, namely converting video to viseme and then converting viseme to character by using separate models. Our proposed method improves word error rate by an absolute rate of 4% compared to the typical sequence to sequence lipreading model on the BBC-Oxford Lip Reading dataset (LRS2).","PeriodicalId":184716,"journal":{"name":"2022 International Conference on Machine Vision and Image Processing (MVIP)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Lip reading using external viseme decoding\",\"authors\":\"J. Peymanfard, M. R. Mohammadi, Hossein Zeinali, N. Mozayani\",\"doi\":\"10.1109/MVIP53647.2022.9738749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lip-reading is the operation of recognizing speech from lip movements. This is a difficult task because the movements of the lips when pronouncing the words are similar for some of them. Viseme is used to describe lip movements during a conversation. This paper aims to show how to use external text data (for viseme-to-character mapping) by dividing video-to-character into two stages, namely converting video to viseme and then converting viseme to character by using separate models. Our proposed method improves word error rate by an absolute rate of 4% compared to the typical sequence to sequence lipreading model on the BBC-Oxford Lip Reading dataset (LRS2).\",\"PeriodicalId\":184716,\"journal\":{\"name\":\"2022 International Conference on Machine Vision and Image Processing (MVIP)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Machine Vision and Image Processing (MVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MVIP53647.2022.9738749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MVIP53647.2022.9738749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

唇读是通过唇的运动来识别语言的操作。这是一项困难的任务,因为其中一些人在发音时嘴唇的动作是相似的。Viseme是用来形容谈话中嘴唇的动作。本文旨在通过将视频到字符分为两个阶段,即将视频转换为viseme,然后使用单独的模型将viseme转换为字符,来展示如何使用外部文本数据(用于viseme到字符的映射)。与BBC-Oxford唇读数据集(LRS2)上典型的序列对序列唇读模型相比,我们提出的方法将单词错误率提高了4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lip reading using external viseme decoding
Lip-reading is the operation of recognizing speech from lip movements. This is a difficult task because the movements of the lips when pronouncing the words are similar for some of them. Viseme is used to describe lip movements during a conversation. This paper aims to show how to use external text data (for viseme-to-character mapping) by dividing video-to-character into two stages, namely converting video to viseme and then converting viseme to character by using separate models. Our proposed method improves word error rate by an absolute rate of 4% compared to the typical sequence to sequence lipreading model on the BBC-Oxford Lip Reading dataset (LRS2).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transfer Learning on Semantic Segmentation for Sugar Crystal Analysis Evaluation of the Image Processing Technique in Interpretation of Polar Plot Characteristics of Transformer Frequency Response Novel Gaussian Mixture-based Video Coding for Fixed Background Video Streaming Automated Cell Tracking Using Adaptive Multi-stage Kalman Filter In Time-laps Images Facial Expression Recognition: a Comparison with Different Classical and Deep Learning Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1