将生成数据模型与形式失效相结合用于内部威胁分析

F. Kammüller, Christian W. Probst
{"title":"将生成数据模型与形式失效相结合用于内部威胁分析","authors":"F. Kammüller, Christian W. Probst","doi":"10.1109/SPW.2014.45","DOIUrl":null,"url":null,"abstract":"In this paper we revisit the advances made on invalidation policies to explore attack possibilities in organizational models. One aspect that has so far eloped systematic analysis of insider threat is the integration of data into attack scenarios and its exploitation for analyzing the models. We draw from recent insights into generation of insider data to complement a logic based mechanical approach. We show how insider analysis can be traced back to the early days of security verification and the Lowe-attack on NSPK. The invalidation of policies allows modelchecking organizational structures to detect insider attacks. Integration of higher order logic specification techniques allows the use of data refinement to explore attack possibilities beyond the initial system specification. We illustrate this combined invalidation technique on the classical example of the naughty lottery fairy. Data generation techniques support the automatic generation of insider attack data for research. The data generation is however always based on human generated insider attack scenarios that have to be designed based on domain knowledge of counter-intelligence experts. Introducing data refinement and invalidation techniques here allows the systematic exploration of such scenarios and exploit data centric views into insider threat analysis.","PeriodicalId":142224,"journal":{"name":"2014 IEEE Security and Privacy Workshops","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Combining Generated Data Models with Formal Invalidation for Insider Threat Analysis\",\"authors\":\"F. Kammüller, Christian W. Probst\",\"doi\":\"10.1109/SPW.2014.45\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we revisit the advances made on invalidation policies to explore attack possibilities in organizational models. One aspect that has so far eloped systematic analysis of insider threat is the integration of data into attack scenarios and its exploitation for analyzing the models. We draw from recent insights into generation of insider data to complement a logic based mechanical approach. We show how insider analysis can be traced back to the early days of security verification and the Lowe-attack on NSPK. The invalidation of policies allows modelchecking organizational structures to detect insider attacks. Integration of higher order logic specification techniques allows the use of data refinement to explore attack possibilities beyond the initial system specification. We illustrate this combined invalidation technique on the classical example of the naughty lottery fairy. Data generation techniques support the automatic generation of insider attack data for research. The data generation is however always based on human generated insider attack scenarios that have to be designed based on domain knowledge of counter-intelligence experts. Introducing data refinement and invalidation techniques here allows the systematic exploration of such scenarios and exploit data centric views into insider threat analysis.\",\"PeriodicalId\":142224,\"journal\":{\"name\":\"2014 IEEE Security and Privacy Workshops\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Security and Privacy Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPW.2014.45\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Security and Privacy Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPW.2014.45","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

在本文中,我们回顾了在无效策略方面取得的进展,以探索组织模型中的攻击可能性。迄今为止,对内部威胁进行系统分析的一个方面是将数据集成到攻击场景中,并利用数据分析模型。我们借鉴了最近对内部数据生成的见解,以补充基于逻辑的机械方法。我们展示了内部分析如何可以追溯到早期的安全验证和对NSPK的low攻击。策略的无效允许对组织结构进行模型检查以检测内部攻击。高阶逻辑规范技术的集成允许使用数据细化来探索超出初始系统规范的攻击可能性。我们用顽皮的彩票仙女的经典例子来说明这种组合无效技术。数据生成技术支持自动生成内部攻击数据以供研究。然而,数据生成总是基于人工生成的内部攻击场景,这些场景必须基于反情报专家的领域知识来设计。在这里引入数据细化和失效技术,可以系统地探索这些场景,并利用以数据为中心的视图进行内部威胁分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining Generated Data Models with Formal Invalidation for Insider Threat Analysis
In this paper we revisit the advances made on invalidation policies to explore attack possibilities in organizational models. One aspect that has so far eloped systematic analysis of insider threat is the integration of data into attack scenarios and its exploitation for analyzing the models. We draw from recent insights into generation of insider data to complement a logic based mechanical approach. We show how insider analysis can be traced back to the early days of security verification and the Lowe-attack on NSPK. The invalidation of policies allows modelchecking organizational structures to detect insider attacks. Integration of higher order logic specification techniques allows the use of data refinement to explore attack possibilities beyond the initial system specification. We illustrate this combined invalidation technique on the classical example of the naughty lottery fairy. Data generation techniques support the automatic generation of insider attack data for research. The data generation is however always based on human generated insider attack scenarios that have to be designed based on domain knowledge of counter-intelligence experts. Introducing data refinement and invalidation techniques here allows the systematic exploration of such scenarios and exploit data centric views into insider threat analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Unintentional Insider Threats Deriving from Social Engineering Exploits Detecting Unknown Insider Threat Scenarios Can We Identify NAT Behavior by Analyzing Traffic Flows? A Case Study in Malware Research Ethics Education: When Teaching Bad is Good Resilience as a New Enforcement Model for IT Security Based on Usage Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1