多目标粒子群优化中寻优局部导向的新方法

Qing Jiang, Mutao Huang, Cheng Wang
{"title":"多目标粒子群优化中寻优局部导向的新方法","authors":"Qing Jiang, Mutao Huang, Cheng Wang","doi":"10.1109/ICNC.2007.116","DOIUrl":null,"url":null,"abstract":"In multi-objective particle swarm optimization (MOPSO) methods, selecting good local guides (the global best particle) for each particle of the population from a set of Pareto-optimal solutions has a great impact on the convergence and diversity of solutions. This paper introduces the particle angle division method as a new method for finding the global best particle for each particle of the population. The particle angle division method is implemented and is compared with adaptive grid method based on the same MOPSO for different test functions. The results show our strategy can improve convergence and diversity of MOPSO largely.","PeriodicalId":250881,"journal":{"name":"Third International Conference on Natural Computation (ICNC 2007)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Novel Method for Finding Good Local Guides in Multi-objective Particle Swarm Optimization\",\"authors\":\"Qing Jiang, Mutao Huang, Cheng Wang\",\"doi\":\"10.1109/ICNC.2007.116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In multi-objective particle swarm optimization (MOPSO) methods, selecting good local guides (the global best particle) for each particle of the population from a set of Pareto-optimal solutions has a great impact on the convergence and diversity of solutions. This paper introduces the particle angle division method as a new method for finding the global best particle for each particle of the population. The particle angle division method is implemented and is compared with adaptive grid method based on the same MOPSO for different test functions. The results show our strategy can improve convergence and diversity of MOPSO largely.\",\"PeriodicalId\":250881,\"journal\":{\"name\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Third International Conference on Natural Computation (ICNC 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2007.116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third International Conference on Natural Computation (ICNC 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2007.116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在多目标粒子群优化(MOPSO)方法中,从一组pareto最优解中为种群中的每个粒子选择良好的局部向导(全局最优粒子)对解的收敛性和多样性有很大影响。本文介绍了粒子角分割法作为一种寻找种群中每个粒子的全局最优粒子的新方法。实现了粒子角划分方法,并与基于同一MOPSO的自适应网格法进行了比较。结果表明,该策略能显著提高MOPSO的收敛性和多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Method for Finding Good Local Guides in Multi-objective Particle Swarm Optimization
In multi-objective particle swarm optimization (MOPSO) methods, selecting good local guides (the global best particle) for each particle of the population from a set of Pareto-optimal solutions has a great impact on the convergence and diversity of solutions. This paper introduces the particle angle division method as a new method for finding the global best particle for each particle of the population. The particle angle division method is implemented and is compared with adaptive grid method based on the same MOPSO for different test functions. The results show our strategy can improve convergence and diversity of MOPSO largely.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotional Evaluation of Color Patterns Based on Rough Sets Uniqueness of Linear Combinations of Ridge Functions PID Neural Network Temperature Control System in Plastic Injecting-moulding Machine The Study of Membrane Fouling Modeling Method Based on Wavelet Neural Network for Sewage Treatment Membrane Bioreactor Simulation and Research of the PCB Vias Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1