使用基于深度学习的攻击破解被屏蔽的AES实现

Daehyeon Bae, Jongbae Hwang, JaeCheol Ha
{"title":"使用基于深度学习的攻击破解被屏蔽的AES实现","authors":"Daehyeon Bae, Jongbae Hwang, JaeCheol Ha","doi":"10.1145/3440943.3444724","DOIUrl":null,"url":null,"abstract":"The block cipher AES (Advanced Encryption Standard) is a cryptographic algorithm used to guarantee the confidentiality of a message. A masked implementation of AES is often used to increase resistance against SCA (Side Channel Attacks). This paper presents some deep learning-based attacks for extracting AES secret keys embedded in cryptographic devices. The proposed attack methods represent new approaches to computing the secret key by applying the mask profiling techniques. The MLP (Multi-Layer Perceptron) and CNN (Convolutional Neural Network) deep learning models are developed to break the masked AES implementation. Our experimental results show the overwhelming advantages of the novel attack methods when targeting both unmasked and masked implementation of AES.","PeriodicalId":310247,"journal":{"name":"Proceedings of the 2020 ACM International Conference on Intelligent Computing and its Emerging Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breaking a Masked AES Implementation Using a Deep Learning-based Attack\",\"authors\":\"Daehyeon Bae, Jongbae Hwang, JaeCheol Ha\",\"doi\":\"10.1145/3440943.3444724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The block cipher AES (Advanced Encryption Standard) is a cryptographic algorithm used to guarantee the confidentiality of a message. A masked implementation of AES is often used to increase resistance against SCA (Side Channel Attacks). This paper presents some deep learning-based attacks for extracting AES secret keys embedded in cryptographic devices. The proposed attack methods represent new approaches to computing the secret key by applying the mask profiling techniques. The MLP (Multi-Layer Perceptron) and CNN (Convolutional Neural Network) deep learning models are developed to break the masked AES implementation. Our experimental results show the overwhelming advantages of the novel attack methods when targeting both unmasked and masked implementation of AES.\",\"PeriodicalId\":310247,\"journal\":{\"name\":\"Proceedings of the 2020 ACM International Conference on Intelligent Computing and its Emerging Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM International Conference on Intelligent Computing and its Emerging Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3440943.3444724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM International Conference on Intelligent Computing and its Emerging Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3440943.3444724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分组密码AES (Advanced Encryption Standard)是一种用于保证消息机密性的加密算法。AES的掩码实现通常用于增强对SCA(侧信道攻击)的抵抗力。提出了几种基于深度学习的加密设备AES密钥提取攻击方法。提出的攻击方法代表了利用掩码分析技术计算密钥的新方法。开发了MLP(多层感知器)和CNN(卷积神经网络)深度学习模型来破解掩码AES实现。我们的实验结果表明,当针对AES的未掩码和掩码实现时,这种新的攻击方法具有压倒性的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Breaking a Masked AES Implementation Using a Deep Learning-based Attack
The block cipher AES (Advanced Encryption Standard) is a cryptographic algorithm used to guarantee the confidentiality of a message. A masked implementation of AES is often used to increase resistance against SCA (Side Channel Attacks). This paper presents some deep learning-based attacks for extracting AES secret keys embedded in cryptographic devices. The proposed attack methods represent new approaches to computing the secret key by applying the mask profiling techniques. The MLP (Multi-Layer Perceptron) and CNN (Convolutional Neural Network) deep learning models are developed to break the masked AES implementation. Our experimental results show the overwhelming advantages of the novel attack methods when targeting both unmasked and masked implementation of AES.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Image Processing Approach for Improving the Recognition of Cluster-like Spheroidized Carbides XGBoost based Packer Identification study using Entry point Machine Learning-Based Profiling Attack Method in RSA Prime Multiplication A Classification method of Fake News based on Ensemble Learning Intelligent Controlling System in Aquaculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1