{"title":"自主平面车辆的人工认知:建模避碰和集体机动","authors":"V. Ivancevic, E. Aidman, L. Yen","doi":"10.1504/IJIDSS.2008.021972","DOIUrl":null,"url":null,"abstract":"A hierarchical cognitive robotics model for a team of unattended robotic ground vehicles (UGVs) is proposed. The first level rigorously defines conflict resolution for a couple of UGVs, using dynamical games on SE(2)-groups of plane motion. The second level extends it to n UGVs, using Nash-equilibrium approach. The third provides adaptive guidance for several groups of UGVs. The fourth, collective manoeuvre level, proposes a combination of an attractor neural model and a fuzzy-neural 'supervisor', to perform an adaptive path definition and waypoints selection, as well as chaos control. The fifth, cognitive level, performs overall mission planning/feedback control.","PeriodicalId":311979,"journal":{"name":"Int. J. Intell. Def. Support Syst.","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Artificial cognition for autonomous planar vehicles: modelling collision avoidance and collective manoeuvre\",\"authors\":\"V. Ivancevic, E. Aidman, L. Yen\",\"doi\":\"10.1504/IJIDSS.2008.021972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hierarchical cognitive robotics model for a team of unattended robotic ground vehicles (UGVs) is proposed. The first level rigorously defines conflict resolution for a couple of UGVs, using dynamical games on SE(2)-groups of plane motion. The second level extends it to n UGVs, using Nash-equilibrium approach. The third provides adaptive guidance for several groups of UGVs. The fourth, collective manoeuvre level, proposes a combination of an attractor neural model and a fuzzy-neural 'supervisor', to perform an adaptive path definition and waypoints selection, as well as chaos control. The fifth, cognitive level, performs overall mission planning/feedback control.\",\"PeriodicalId\":311979,\"journal\":{\"name\":\"Int. J. Intell. Def. Support Syst.\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Intell. Def. Support Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJIDSS.2008.021972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Intell. Def. Support Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJIDSS.2008.021972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Artificial cognition for autonomous planar vehicles: modelling collision avoidance and collective manoeuvre
A hierarchical cognitive robotics model for a team of unattended robotic ground vehicles (UGVs) is proposed. The first level rigorously defines conflict resolution for a couple of UGVs, using dynamical games on SE(2)-groups of plane motion. The second level extends it to n UGVs, using Nash-equilibrium approach. The third provides adaptive guidance for several groups of UGVs. The fourth, collective manoeuvre level, proposes a combination of an attractor neural model and a fuzzy-neural 'supervisor', to perform an adaptive path definition and waypoints selection, as well as chaos control. The fifth, cognitive level, performs overall mission planning/feedback control.