联邦边缘学习的优化框架

Yangchen Li, Ying Cui, Vincent K. N. Lau
{"title":"联邦边缘学习的优化框架","authors":"Yangchen Li, Ying Cui, Vincent K. N. Lau","doi":"10.1109/spawc51304.2022.9834013","DOIUrl":null,"url":null,"abstract":"This paper intends to optimize the overall implementing process of federated learning (FL) in practical edge computing systems. First, we present a general FL algorithm, namely GenQSGD+, whose parameters include the numbers of global and local iterations, mini-batch size, and step size sequence. Then, we analyze the convergence of GenQSGD+ with arbitrary algorithm parameters. Next, we optimize all the algorithm parameters of GenQSGD+ to minimize the energy cost under the constraints on the time cost, convergence error, and step size sequence. The resulting optimization problem is challenging due to its non-convexity and the presence of a dimension-varying vector variable and non-differentiable constraint functions. We transform the complicated problem into a more tractable nonconvex problem using the structural properties of the original problem and propose an iterative algorithm using general inner approximation (GIA) and complementary geometric programming (CGP) to obtain a KKT point. Finally, we numerically demonstrate remarkable gains of optimization-based GenQSGD+ over typical FL algorithms and the advancement of the proposed optimization framework for federated edge learning.","PeriodicalId":423807,"journal":{"name":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Optimization Framework for Federated Edge Learning\",\"authors\":\"Yangchen Li, Ying Cui, Vincent K. N. Lau\",\"doi\":\"10.1109/spawc51304.2022.9834013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper intends to optimize the overall implementing process of federated learning (FL) in practical edge computing systems. First, we present a general FL algorithm, namely GenQSGD+, whose parameters include the numbers of global and local iterations, mini-batch size, and step size sequence. Then, we analyze the convergence of GenQSGD+ with arbitrary algorithm parameters. Next, we optimize all the algorithm parameters of GenQSGD+ to minimize the energy cost under the constraints on the time cost, convergence error, and step size sequence. The resulting optimization problem is challenging due to its non-convexity and the presence of a dimension-varying vector variable and non-differentiable constraint functions. We transform the complicated problem into a more tractable nonconvex problem using the structural properties of the original problem and propose an iterative algorithm using general inner approximation (GIA) and complementary geometric programming (CGP) to obtain a KKT point. Finally, we numerically demonstrate remarkable gains of optimization-based GenQSGD+ over typical FL algorithms and the advancement of the proposed optimization framework for federated edge learning.\",\"PeriodicalId\":423807,\"journal\":{\"name\":\"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/spawc51304.2022.9834013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/spawc51304.2022.9834013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在优化联邦学习(FL)在实际边缘计算系统中的整体实施过程。首先,我们提出了一种通用的FL算法,即GenQSGD+,其参数包括全局迭代次数和局部迭代次数、小批量大小和步长序列。然后,我们分析了任意算法参数下GenQSGD+的收敛性。其次,在时间代价、收敛误差和步长序列约束下,对GenQSGD+的所有算法参数进行优化,使能量代价最小。所得到的优化问题由于其非凸性和存在变维向量变量和不可微约束函数而具有挑战性。利用原问题的结构性质,将该复杂问题转化为更易于处理的非凸问题,并提出了一种利用一般内逼近(GIA)和互补几何规划(CGP)的迭代算法来获得KKT点。最后,我们在数值上证明了基于优化的GenQSGD+相对于典型FL算法的显著收益,以及所提出的联邦边缘学习优化框架的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Optimization Framework for Federated Edge Learning
This paper intends to optimize the overall implementing process of federated learning (FL) in practical edge computing systems. First, we present a general FL algorithm, namely GenQSGD+, whose parameters include the numbers of global and local iterations, mini-batch size, and step size sequence. Then, we analyze the convergence of GenQSGD+ with arbitrary algorithm parameters. Next, we optimize all the algorithm parameters of GenQSGD+ to minimize the energy cost under the constraints on the time cost, convergence error, and step size sequence. The resulting optimization problem is challenging due to its non-convexity and the presence of a dimension-varying vector variable and non-differentiable constraint functions. We transform the complicated problem into a more tractable nonconvex problem using the structural properties of the original problem and propose an iterative algorithm using general inner approximation (GIA) and complementary geometric programming (CGP) to obtain a KKT point. Finally, we numerically demonstrate remarkable gains of optimization-based GenQSGD+ over typical FL algorithms and the advancement of the proposed optimization framework for federated edge learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Multi-Antenna Coded Caching Deep Transfer Learning Based Radio Map Estimation for Indoor Wireless Communications A New Outage Probability Bound for IR-HARQ and Its Application to Power Adaptation SPAWC 2022 Cover Page A Sequential Experience-driven Contextual Bandit Policy for MIMO TWAF Online Relay Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1