升沉运动水动力系数的计算预测

F. Cakici
{"title":"升沉运动水动力系数的计算预测","authors":"F. Cakici","doi":"10.14744/seatific.2021.0002","DOIUrl":null,"url":null,"abstract":"In this study, the hydrodynamic coefficients associated with heave motion are obtained by using unsteady Reynolds-averaged Navier-Stokes (URANS) approach. The well-known Wigley hull is selected for the calculations of uncoupled added mass and damping coefficients (A33, B33) in deep water. Numerical simulations are performed for six different oscillation frequencies at the Froude number 0.3. First, the 3D ship model is forced in the heave direction with certain frequencies and then the hydrodynamic coefficients are computed with the help of Fourier series expansion. Numerical results are compared with those obtained by the experiments and strip theory. The verification and validation study for the damping term is also performed by implementing the Grid Convergence Index (GCI) method.","PeriodicalId":170561,"journal":{"name":"Seatific Engineering Research Journal","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational prediction of hydrodynamic coefficients for heave motion\",\"authors\":\"F. Cakici\",\"doi\":\"10.14744/seatific.2021.0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the hydrodynamic coefficients associated with heave motion are obtained by using unsteady Reynolds-averaged Navier-Stokes (URANS) approach. The well-known Wigley hull is selected for the calculations of uncoupled added mass and damping coefficients (A33, B33) in deep water. Numerical simulations are performed for six different oscillation frequencies at the Froude number 0.3. First, the 3D ship model is forced in the heave direction with certain frequencies and then the hydrodynamic coefficients are computed with the help of Fourier series expansion. Numerical results are compared with those obtained by the experiments and strip theory. The verification and validation study for the damping term is also performed by implementing the Grid Convergence Index (GCI) method.\",\"PeriodicalId\":170561,\"journal\":{\"name\":\"Seatific Engineering Research Journal\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seatific Engineering Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14744/seatific.2021.0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seatific Engineering Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14744/seatific.2021.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用非定常reynolds -average Navier-Stokes (URANS)方法获得了与升沉运动相关的水动力系数。选择著名的威格利船体进行深水中不耦合附加质量和阻尼系数(A33, B33)的计算。在弗鲁德数为0.3时,对6种不同的振荡频率进行了数值模拟。首先将三维船舶模型以一定频率向升沉方向施加压力,然后利用傅里叶级数展开计算其水动力系数。数值结果与实验结果和条形理论结果进行了比较。采用网格收敛指数(GCI)方法对阻尼项进行了验证研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational prediction of hydrodynamic coefficients for heave motion
In this study, the hydrodynamic coefficients associated with heave motion are obtained by using unsteady Reynolds-averaged Navier-Stokes (URANS) approach. The well-known Wigley hull is selected for the calculations of uncoupled added mass and damping coefficients (A33, B33) in deep water. Numerical simulations are performed for six different oscillation frequencies at the Froude number 0.3. First, the 3D ship model is forced in the heave direction with certain frequencies and then the hydrodynamic coefficients are computed with the help of Fourier series expansion. Numerical results are compared with those obtained by the experiments and strip theory. The verification and validation study for the damping term is also performed by implementing the Grid Convergence Index (GCI) method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance analyses and optimization of a regenerative supercritical carbon dioxide power cycle with intercooler and reheater Fog collection - materials, techniques and affecting parameters - A review Optimizing power of a variable-temperature heat reservoir Brayton cycle for space nuclear power plant Thermodynamic aspects of solid propellant gas generator for aircraft application Numerical investigation of flow over tandem and side-by-side cylinders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1