异构嵌入式CPU和GPU架构的研究

G.Sunil Kumar, J. Kamal Vijetha, K. G. S. Venkatesan
{"title":"异构嵌入式CPU和GPU架构的研究","authors":"G.Sunil Kumar, J. Kamal Vijetha, K. G. S. Venkatesan","doi":"10.58599/ijsmem.2023.1303","DOIUrl":null,"url":null,"abstract":"Edge detection using the Canny method is popular. The Canny method’s calculation is too complex for traditional embedded systems, preventing real-time edge recognition. High-end embedded CPUs with GPGPUs can process more data (General Purpose Graphics Processing Units). This research proposes a distributed computing-friendly parallel canny technique.","PeriodicalId":103282,"journal":{"name":"International Journal of Scientific Methods in Engineering and Management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Investigation of Heterogeneous Embedded CPU and GPU Architectures\",\"authors\":\"G.Sunil Kumar, J. Kamal Vijetha, K. G. S. Venkatesan\",\"doi\":\"10.58599/ijsmem.2023.1303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge detection using the Canny method is popular. The Canny method’s calculation is too complex for traditional embedded systems, preventing real-time edge recognition. High-end embedded CPUs with GPGPUs can process more data (General Purpose Graphics Processing Units). This research proposes a distributed computing-friendly parallel canny technique.\",\"PeriodicalId\":103282,\"journal\":{\"name\":\"International Journal of Scientific Methods in Engineering and Management\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Scientific Methods in Engineering and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58599/ijsmem.2023.1303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Methods in Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58599/ijsmem.2023.1303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用Canny方法进行边缘检测是很受欢迎的。Canny方法的计算对于传统的嵌入式系统来说过于复杂,不利于实时的边缘识别。高端嵌入式cpu配备gpgpu,可以处理更多的数据(通用图形处理单元)。本研究提出了一种分布式计算友好的并行计算技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Investigation of Heterogeneous Embedded CPU and GPU Architectures
Edge detection using the Canny method is popular. The Canny method’s calculation is too complex for traditional embedded systems, preventing real-time edge recognition. High-end embedded CPUs with GPGPUs can process more data (General Purpose Graphics Processing Units). This research proposes a distributed computing-friendly parallel canny technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of small cell antenna based massive MIMO system for high spectrum and energy efficiencies Information Preservation and Restore Strategies for the Cloud Era Energy-Saving Smart-Home Automation System Based on the Internet of Things Content based word image retrieval using multi-layer perception based convolutional neural networks A Review on low-Power VLSI CMOS and CNTFET Circuits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1