G.Sunil Kumar, J. Kamal Vijetha, K. G. S. Venkatesan
{"title":"异构嵌入式CPU和GPU架构的研究","authors":"G.Sunil Kumar, J. Kamal Vijetha, K. G. S. Venkatesan","doi":"10.58599/ijsmem.2023.1303","DOIUrl":null,"url":null,"abstract":"Edge detection using the Canny method is popular. The Canny method’s calculation is too complex for traditional embedded systems, preventing real-time edge recognition. High-end embedded CPUs with GPGPUs can process more data (General Purpose Graphics Processing Units). This research proposes a distributed computing-friendly parallel canny technique.","PeriodicalId":103282,"journal":{"name":"International Journal of Scientific Methods in Engineering and Management","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Investigation of Heterogeneous Embedded CPU and GPU Architectures\",\"authors\":\"G.Sunil Kumar, J. Kamal Vijetha, K. G. S. Venkatesan\",\"doi\":\"10.58599/ijsmem.2023.1303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge detection using the Canny method is popular. The Canny method’s calculation is too complex for traditional embedded systems, preventing real-time edge recognition. High-end embedded CPUs with GPGPUs can process more data (General Purpose Graphics Processing Units). This research proposes a distributed computing-friendly parallel canny technique.\",\"PeriodicalId\":103282,\"journal\":{\"name\":\"International Journal of Scientific Methods in Engineering and Management\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Scientific Methods in Engineering and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.58599/ijsmem.2023.1303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Methods in Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58599/ijsmem.2023.1303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Investigation of Heterogeneous Embedded CPU and GPU Architectures
Edge detection using the Canny method is popular. The Canny method’s calculation is too complex for traditional embedded systems, preventing real-time edge recognition. High-end embedded CPUs with GPGPUs can process more data (General Purpose Graphics Processing Units). This research proposes a distributed computing-friendly parallel canny technique.