基于核分类器和远程监督的调节事件提取

Andre Lamurias, M. J. Rodrigues, L. Clarke, Francisco M. Couto
{"title":"基于核分类器和远程监督的调节事件提取","authors":"Andre Lamurias, M. J. Rodrigues, L. Clarke, Francisco M. Couto","doi":"10.18653/v1/W16-3011","DOIUrl":null,"url":null,"abstract":"This paper describes our system to extract binary regulatory relations from text, used to participate in the SeeDev task of BioNLP-ST 2016. Our system was based on machine learning, using support vector machines with a shallow linguistic kernel to identify each type of relation. Additionally, we employed a distant supervised approach to increase the size of the training data. Our submission obtained the third best precision of the SeeDev-binary task. Although the distant supervised approach did not significantly improve the results, we expect that by exploring other techniques to use unlabeled data should lead to better results.","PeriodicalId":200974,"journal":{"name":"Workshop on Biomedical Natural Language Processing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Extraction of Regulatory Events using Kernel-based Classifiers and Distant Supervision\",\"authors\":\"Andre Lamurias, M. J. Rodrigues, L. Clarke, Francisco M. Couto\",\"doi\":\"10.18653/v1/W16-3011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes our system to extract binary regulatory relations from text, used to participate in the SeeDev task of BioNLP-ST 2016. Our system was based on machine learning, using support vector machines with a shallow linguistic kernel to identify each type of relation. Additionally, we employed a distant supervised approach to increase the size of the training data. Our submission obtained the third best precision of the SeeDev-binary task. Although the distant supervised approach did not significantly improve the results, we expect that by exploring other techniques to use unlabeled data should lead to better results.\",\"PeriodicalId\":200974,\"journal\":{\"name\":\"Workshop on Biomedical Natural Language Processing\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Biomedical Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W16-3011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Biomedical Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W16-3011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文描述了我们的系统从文本中提取二进制调节关系,用于参与BioNLP-ST 2016的SeeDev任务。我们的系统基于机器学习,使用支持向量机和浅层语言内核来识别每种类型的关系。此外,我们采用远程监督方法来增加训练数据的大小。我们的提交获得了SeeDev-binary任务的第三高精度。尽管远程监督方法并没有显著改善结果,但我们希望通过探索其他技术来使用未标记的数据应该会带来更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Extraction of Regulatory Events using Kernel-based Classifiers and Distant Supervision
This paper describes our system to extract binary regulatory relations from text, used to participate in the SeeDev task of BioNLP-ST 2016. Our system was based on machine learning, using support vector machines with a shallow linguistic kernel to identify each type of relation. Additionally, we employed a distant supervised approach to increase the size of the training data. Our submission obtained the third best precision of the SeeDev-binary task. Although the distant supervised approach did not significantly improve the results, we expect that by exploring other techniques to use unlabeled data should lead to better results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BIOptimus: Pre-training an Optimal Biomedical Language Model with Curriculum Learning for Named Entity Recognition Multi-Source (Pre-)Training for Cross-Domain Measurement, Unit and Context Extraction Building a Corpus for Biomedical Relation Extraction of Species Mentions Good Data, Large Data, or No Data? Comparing Three Approaches in Developing Research Aspect Classifiers for Biomedical Papers Evaluation of ChatGPT on Biomedical Tasks: A Zero-Shot Comparison with Fine-Tuned Generative Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1