{"title":"多移动机器人协同操作和运输的运动规划","authors":"A. Yamashita, T. Arai, J. Ota, H. Asama","doi":"10.1109/TRA.2003.809592","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a motion-planning method of multiple mobile robots for cooperative transportation of a large object in a three-dimensional environment. This task has various kinds of problems, such as obstacle avoidance and stable manipulation. All of these problems cannot be solved at once, since it would result in a dramatic increase of the computational time. Accordingly, we divided the motion planner into a global path planner and a local manipulation planner, designed them, and integrated them. The aim was to integrate a gross motion planner and a fine motion planner. Concerning the global path planner, we reduced the dimensions of the configuration space (C-space) using the feature of transportation by mobile robots. We used the potential field to find the solution by searching in this smaller-dimension reconstructed C-space. In the global path planner, the constraints of the object manipulation are considered as the cost function and the heuristic function in the A/sup */ search. For the local manipulation planner, we developed a manipulation technique, which is suitable for mobile robots by position control. We computed the conditions in which the object becomes unstable during manipulation and generated each robot's motion, considering the robots' motion errors and indefinite factors from the planning stage. We verified the effectiveness of our proposed motion planning method through simulations.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2003-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"168","resultStr":"{\"title\":\"Motion planning of multiple mobile robots for Cooperative manipulation and transportation\",\"authors\":\"A. Yamashita, T. Arai, J. Ota, H. Asama\",\"doi\":\"10.1109/TRA.2003.809592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a motion-planning method of multiple mobile robots for cooperative transportation of a large object in a three-dimensional environment. This task has various kinds of problems, such as obstacle avoidance and stable manipulation. All of these problems cannot be solved at once, since it would result in a dramatic increase of the computational time. Accordingly, we divided the motion planner into a global path planner and a local manipulation planner, designed them, and integrated them. The aim was to integrate a gross motion planner and a fine motion planner. Concerning the global path planner, we reduced the dimensions of the configuration space (C-space) using the feature of transportation by mobile robots. We used the potential field to find the solution by searching in this smaller-dimension reconstructed C-space. In the global path planner, the constraints of the object manipulation are considered as the cost function and the heuristic function in the A/sup */ search. For the local manipulation planner, we developed a manipulation technique, which is suitable for mobile robots by position control. We computed the conditions in which the object becomes unstable during manipulation and generated each robot's motion, considering the robots' motion errors and indefinite factors from the planning stage. We verified the effectiveness of our proposed motion planning method through simulations.\",\"PeriodicalId\":161449,\"journal\":{\"name\":\"IEEE Trans. Robotics Autom.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"168\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Robotics Autom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRA.2003.809592\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRA.2003.809592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Motion planning of multiple mobile robots for Cooperative manipulation and transportation
In this paper, we propose a motion-planning method of multiple mobile robots for cooperative transportation of a large object in a three-dimensional environment. This task has various kinds of problems, such as obstacle avoidance and stable manipulation. All of these problems cannot be solved at once, since it would result in a dramatic increase of the computational time. Accordingly, we divided the motion planner into a global path planner and a local manipulation planner, designed them, and integrated them. The aim was to integrate a gross motion planner and a fine motion planner. Concerning the global path planner, we reduced the dimensions of the configuration space (C-space) using the feature of transportation by mobile robots. We used the potential field to find the solution by searching in this smaller-dimension reconstructed C-space. In the global path planner, the constraints of the object manipulation are considered as the cost function and the heuristic function in the A/sup */ search. For the local manipulation planner, we developed a manipulation technique, which is suitable for mobile robots by position control. We computed the conditions in which the object becomes unstable during manipulation and generated each robot's motion, considering the robots' motion errors and indefinite factors from the planning stage. We verified the effectiveness of our proposed motion planning method through simulations.