半导体器件,微波,数控迭代学习控制算法的下肢康复主动人机协作方法,热模型,分析,优化

Jin Xian, Samba Aimé Hervé
{"title":"半导体器件,微波,数控迭代学习控制算法的下肢康复主动人机协作方法,热模型,分析,优化","authors":"Jin Xian, Samba Aimé Hervé","doi":"10.37394/23205.2022.21.29","DOIUrl":null,"url":null,"abstract":"At present, the motion control algorithms of lower limb exoskeleton robots have errors in tracking the desired trajectory of human hip and knee joints, which leads to poor follow-up performance of the human-machine system. Therefore, an iterative learning control algorithm is proposed to track the desired trajectory of human hip and knee joints. In this paper, the experimental platform of lower limb exoskeleton rehabilitation robot is built, and the control system software and hardware design and robot prototype function test are carried out. On this basis, a series of experiments are carried out to verify the rationality of the robot structure and the feasibility of the control method. Firstly, the dynamic model of the lower limb exoskeleton robot is established based on the structure analysis of the human lower limb; secondly, the servo control model of the lower limb exoskeleton robot is established based on the iterative learning control algorithm; finally, the exponential gain closed-loop system is designed by using MATLAB software. The relationship between convergence speed and spectral radius is analyzed, and the expected trajectory of hip joint and knee joint is obtained. The simulation results show that the algorithm can effectively improve the gait tracking accuracy of the lower limb exoskeleton robot and improve the follow-up performance of the human-machine system.","PeriodicalId":332148,"journal":{"name":"WSEAS TRANSACTIONS ON COMPUTERS","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semiconductor Devices, Microwave, Numrobust Iterative Learning Control Algorithm for Lower Limb Rehabilitation Proactive Human-robot Collaborationerical Methods, Thermal Model, Analysis, Optimization\",\"authors\":\"Jin Xian, Samba Aimé Hervé\",\"doi\":\"10.37394/23205.2022.21.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, the motion control algorithms of lower limb exoskeleton robots have errors in tracking the desired trajectory of human hip and knee joints, which leads to poor follow-up performance of the human-machine system. Therefore, an iterative learning control algorithm is proposed to track the desired trajectory of human hip and knee joints. In this paper, the experimental platform of lower limb exoskeleton rehabilitation robot is built, and the control system software and hardware design and robot prototype function test are carried out. On this basis, a series of experiments are carried out to verify the rationality of the robot structure and the feasibility of the control method. Firstly, the dynamic model of the lower limb exoskeleton robot is established based on the structure analysis of the human lower limb; secondly, the servo control model of the lower limb exoskeleton robot is established based on the iterative learning control algorithm; finally, the exponential gain closed-loop system is designed by using MATLAB software. The relationship between convergence speed and spectral radius is analyzed, and the expected trajectory of hip joint and knee joint is obtained. The simulation results show that the algorithm can effectively improve the gait tracking accuracy of the lower limb exoskeleton robot and improve the follow-up performance of the human-machine system.\",\"PeriodicalId\":332148,\"journal\":{\"name\":\"WSEAS TRANSACTIONS ON COMPUTERS\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS TRANSACTIONS ON COMPUTERS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/23205.2022.21.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON COMPUTERS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23205.2022.21.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,下肢外骨骼机器人的运动控制算法在跟踪人体髋关节和膝关节的期望轨迹时存在误差,导致人机系统的跟踪性能较差。因此,提出了一种迭代学习控制算法来跟踪人体髋关节和膝关节的期望轨迹。本文搭建了下肢外骨骼康复机器人实验平台,进行了控制系统软硬件设计和机器人样机功能测试。在此基础上,进行了一系列实验,验证了机器人结构的合理性和控制方法的可行性。首先,在分析人体下肢结构的基础上,建立了下肢外骨骼机器人的动力学模型;其次,基于迭代学习控制算法建立了下肢外骨骼机器人的伺服控制模型;最后,利用MATLAB软件设计了指数增益闭环系统。分析了收敛速度与谱半径的关系,得到了髋关节和膝关节的预期运动轨迹。仿真结果表明,该算法能有效提高下肢外骨骼机器人的步态跟踪精度,提高人机系统的跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Semiconductor Devices, Microwave, Numrobust Iterative Learning Control Algorithm for Lower Limb Rehabilitation Proactive Human-robot Collaborationerical Methods, Thermal Model, Analysis, Optimization
At present, the motion control algorithms of lower limb exoskeleton robots have errors in tracking the desired trajectory of human hip and knee joints, which leads to poor follow-up performance of the human-machine system. Therefore, an iterative learning control algorithm is proposed to track the desired trajectory of human hip and knee joints. In this paper, the experimental platform of lower limb exoskeleton rehabilitation robot is built, and the control system software and hardware design and robot prototype function test are carried out. On this basis, a series of experiments are carried out to verify the rationality of the robot structure and the feasibility of the control method. Firstly, the dynamic model of the lower limb exoskeleton robot is established based on the structure analysis of the human lower limb; secondly, the servo control model of the lower limb exoskeleton robot is established based on the iterative learning control algorithm; finally, the exponential gain closed-loop system is designed by using MATLAB software. The relationship between convergence speed and spectral radius is analyzed, and the expected trajectory of hip joint and knee joint is obtained. The simulation results show that the algorithm can effectively improve the gait tracking accuracy of the lower limb exoskeleton robot and improve the follow-up performance of the human-machine system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Medical Image Classification using a Many to Many Relation, Multilayered Fuzzy Systems and AI Aspects of Symmetry in Petri Nets Chaos in Order: Applying ML, NLP, and Chaos Theory in Open Source Intelligence for Counter-Terrorism Combinatorial Optimization of Engineering Systems based on Diagrammatic Design Federated Learning: Attacks and Defenses, Rewards, Energy Efficiency: Past, Present and Future
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1