{"title":"半导体器件,微波,数控迭代学习控制算法的下肢康复主动人机协作方法,热模型,分析,优化","authors":"Jin Xian, Samba Aimé Hervé","doi":"10.37394/23205.2022.21.29","DOIUrl":null,"url":null,"abstract":"At present, the motion control algorithms of lower limb exoskeleton robots have errors in tracking the desired trajectory of human hip and knee joints, which leads to poor follow-up performance of the human-machine system. Therefore, an iterative learning control algorithm is proposed to track the desired trajectory of human hip and knee joints. In this paper, the experimental platform of lower limb exoskeleton rehabilitation robot is built, and the control system software and hardware design and robot prototype function test are carried out. On this basis, a series of experiments are carried out to verify the rationality of the robot structure and the feasibility of the control method. Firstly, the dynamic model of the lower limb exoskeleton robot is established based on the structure analysis of the human lower limb; secondly, the servo control model of the lower limb exoskeleton robot is established based on the iterative learning control algorithm; finally, the exponential gain closed-loop system is designed by using MATLAB software. The relationship between convergence speed and spectral radius is analyzed, and the expected trajectory of hip joint and knee joint is obtained. The simulation results show that the algorithm can effectively improve the gait tracking accuracy of the lower limb exoskeleton robot and improve the follow-up performance of the human-machine system.","PeriodicalId":332148,"journal":{"name":"WSEAS TRANSACTIONS ON COMPUTERS","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semiconductor Devices, Microwave, Numrobust Iterative Learning Control Algorithm for Lower Limb Rehabilitation Proactive Human-robot Collaborationerical Methods, Thermal Model, Analysis, Optimization\",\"authors\":\"Jin Xian, Samba Aimé Hervé\",\"doi\":\"10.37394/23205.2022.21.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, the motion control algorithms of lower limb exoskeleton robots have errors in tracking the desired trajectory of human hip and knee joints, which leads to poor follow-up performance of the human-machine system. Therefore, an iterative learning control algorithm is proposed to track the desired trajectory of human hip and knee joints. In this paper, the experimental platform of lower limb exoskeleton rehabilitation robot is built, and the control system software and hardware design and robot prototype function test are carried out. On this basis, a series of experiments are carried out to verify the rationality of the robot structure and the feasibility of the control method. Firstly, the dynamic model of the lower limb exoskeleton robot is established based on the structure analysis of the human lower limb; secondly, the servo control model of the lower limb exoskeleton robot is established based on the iterative learning control algorithm; finally, the exponential gain closed-loop system is designed by using MATLAB software. The relationship between convergence speed and spectral radius is analyzed, and the expected trajectory of hip joint and knee joint is obtained. The simulation results show that the algorithm can effectively improve the gait tracking accuracy of the lower limb exoskeleton robot and improve the follow-up performance of the human-machine system.\",\"PeriodicalId\":332148,\"journal\":{\"name\":\"WSEAS TRANSACTIONS ON COMPUTERS\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS TRANSACTIONS ON COMPUTERS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/23205.2022.21.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON COMPUTERS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23205.2022.21.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Semiconductor Devices, Microwave, Numrobust Iterative Learning Control Algorithm for Lower Limb Rehabilitation Proactive Human-robot Collaborationerical Methods, Thermal Model, Analysis, Optimization
At present, the motion control algorithms of lower limb exoskeleton robots have errors in tracking the desired trajectory of human hip and knee joints, which leads to poor follow-up performance of the human-machine system. Therefore, an iterative learning control algorithm is proposed to track the desired trajectory of human hip and knee joints. In this paper, the experimental platform of lower limb exoskeleton rehabilitation robot is built, and the control system software and hardware design and robot prototype function test are carried out. On this basis, a series of experiments are carried out to verify the rationality of the robot structure and the feasibility of the control method. Firstly, the dynamic model of the lower limb exoskeleton robot is established based on the structure analysis of the human lower limb; secondly, the servo control model of the lower limb exoskeleton robot is established based on the iterative learning control algorithm; finally, the exponential gain closed-loop system is designed by using MATLAB software. The relationship between convergence speed and spectral radius is analyzed, and the expected trajectory of hip joint and knee joint is obtained. The simulation results show that the algorithm can effectively improve the gait tracking accuracy of the lower limb exoskeleton robot and improve the follow-up performance of the human-machine system.