{"title":"不平衡数据的混合采样","authors":"Chris Seiffert, T. Khoshgoftaar, J. V. Hulse","doi":"10.3233/ICA-2009-0314","DOIUrl":null,"url":null,"abstract":"Decision tree learning in the presence of imbalanced data is an issue of great practical importance, as such data is ubiquitous in a wide variety of application domains. We propose hybrid data sampling, which uses a combination of two sampling techniques such as random oversampling and random undersampling, to create a balanced dataset for use in the construction of decision tree classification models. The results demonstrate that our methodology is often able to improve the performance of a C4.5 decision tree learner in the context of imbalanced data.","PeriodicalId":169554,"journal":{"name":"2008 IEEE International Conference on Information Reuse and Integration","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":"{\"title\":\"Hybrid sampling for imbalanced data\",\"authors\":\"Chris Seiffert, T. Khoshgoftaar, J. V. Hulse\",\"doi\":\"10.3233/ICA-2009-0314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decision tree learning in the presence of imbalanced data is an issue of great practical importance, as such data is ubiquitous in a wide variety of application domains. We propose hybrid data sampling, which uses a combination of two sampling techniques such as random oversampling and random undersampling, to create a balanced dataset for use in the construction of decision tree classification models. The results demonstrate that our methodology is often able to improve the performance of a C4.5 decision tree learner in the context of imbalanced data.\",\"PeriodicalId\":169554,\"journal\":{\"name\":\"2008 IEEE International Conference on Information Reuse and Integration\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Information Reuse and Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ICA-2009-0314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Information Reuse and Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ICA-2009-0314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Decision tree learning in the presence of imbalanced data is an issue of great practical importance, as such data is ubiquitous in a wide variety of application domains. We propose hybrid data sampling, which uses a combination of two sampling techniques such as random oversampling and random undersampling, to create a balanced dataset for use in the construction of decision tree classification models. The results demonstrate that our methodology is often able to improve the performance of a C4.5 decision tree learner in the context of imbalanced data.